山東省濟南市歷城區(qū)2024屆中考押題數(shù)學預測卷含解析_第1頁
山東省濟南市歷城區(qū)2024屆中考押題數(shù)學預測卷含解析_第2頁
山東省濟南市歷城區(qū)2024屆中考押題數(shù)學預測卷含解析_第3頁
山東省濟南市歷城區(qū)2024屆中考押題數(shù)學預測卷含解析_第4頁
山東省濟南市歷城區(qū)2024屆中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省濟南市歷城區(qū)2024屆中考押題數(shù)學預測卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖是一個小正方體的展開圖,把展開圖折疊成小正方體后,有“我”字的一面相對面上的字是()A.國 B.厲 C.害 D.了2.下列一元二次方程中,有兩個不相等實數(shù)根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=03.如圖,△ABC內(nèi)接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.4.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.5.如圖,已知點A,B分別是反比例函數(shù)y=(x<0),y=(x>0)的圖象上的點,且∠AOB=90°,tan∠BAO=,則k的值為()A.2 B.﹣2 C.4 D.﹣46.如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,則DE=()A.1 B.2 C.3 D.47.《九章算術》是中國傳統(tǒng)數(shù)學的重要著作,方程術是它的最高成就.其中記載:今有共買物,人出八,盈三;人出七,不足四,問人數(shù)、物價各幾何?譯文:今有人合伙購物,每人出8錢,會多3錢;每人出7錢,又會差4錢,問人數(shù)、物價各是多少?設合伙人數(shù)為x人,物價為y錢,以下列出的方程組正確的是(

)A. B. C. D.8.已知正多邊形的一個外角為36°,則該正多邊形的邊數(shù)為().A.12 B.10 C.8 D.69.下列運算正確的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a(chǎn)3+a2=2a510.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點,E,F(xiàn)分別是AP,RP的中點,當點P在BC上從點B向點C移動而點R不動時,那么下列結論成立的是().A.線段EF的長逐漸增大 B.線段EF的長逐漸減少C.線段EF的長不變 D.線段EF的長不能確定二、填空題(本大題共6個小題,每小題3分,共18分)11.ABCD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動,P、Q兩點從出發(fā)開始到__________秒時,點P和點Q的距離是10cm.12.已知一個多邊形的每一個內(nèi)角都是,則這個多邊形是_________邊形.13.小剛家、公交車站、學校在一條筆直的公路旁(小剛家、學校到這條公路的距離忽略不計).一天,小剛從家出發(fā)去上學,沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學校(上、下車時間忽略不計),小剛與學校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數(shù)關系如圖所示.已知小剛從家出發(fā)7分鐘時與家的距離是1200米,從上公交車到他到達學校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發(fā)5分鐘時乘上公交車;③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號是_____.14.已知點P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點P向左平移1個單位,再向上平移2個單位得到點Q,點Q也在該函數(shù)y=kx+b的圖象上.(1)k的值是;(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點,且與反比例函數(shù)y=圖象交于C,D兩點(點C在第二象限內(nèi)),過點C作CE⊥x軸于點E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若=,則b的值是.15.計算tan260°﹣2sin30°﹣cos45°的結果為_____.16.如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是______.三、解答題(共8題,共72分)17.(8分)如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,在AB的延長線上有點E,且EF=ED.(1)求證:DE是⊙O的切線;(2)若tanA=,探究線段AB和BE之間的數(shù)量關系,并證明;(3)在(2)的條件下,若OF=1,求圓O的半徑.18.(8分)計算:.化簡:.19.(8分)如圖,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,.點在函數(shù)圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.求、的值;如圖①,連接,線段上的點關于直線的對稱點恰好在線段上,求點的坐標;如圖②,動點在線段上,過點作軸的垂線分別與交于點,與拋物線交于點.試問:拋物線上是否存在點,使得與的面積相等,且線段的長度最?。咳绻嬖?,求出點的坐標;如果不存在,說明理由.20.(8分)先化簡,再求值:,其中a是方程a(a+1)=0的解.21.(8分)某中學開學初到商場購買A、B兩種品牌的足球,購買A種品牌的足球20個,B種品牌的足球30個,共花費4600元,已知購買4個B種品牌的足球與購買5個A種品牌的足球費用相同.(1)求購買一個A種品牌、一個B種品牌的足球各需多少元.(2)學校為了響應“足球進校園”的號召,決定再次購進A、B兩種品牌足球共42個,正好趕上商場對商品價格進行調(diào)整,A品牌足球售價比第一次購買時提高5元,B品牌足球按第一次購買時售價的9折出售,如果學校此次購買A、B兩種品牌足球的總費用不超過第一次花費的80%,且保證這次購買的B種品牌足球不少于20個,則這次學校有哪幾種購買方案?(3)請你求出學校在第二次購買活動中最多需要多少資金?22.(10分)如圖,在△ABC中,D為BC邊上一點,AC=DC,E為AB邊的中點,(1)尺規(guī)作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.23.(12分)如圖,已知反比例函數(shù)y=k1x與一次函數(shù)y=k2x+b的圖象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面積;若M(x1,y1),N(x2,y2)是反比例函數(shù)y=k1x的圖象上的兩點,且x1<x2,y24.一個不透明的口袋中裝有2個紅球、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點作答.【題目詳解】∴有“我”字一面的相對面上的字是國.故答案選A.【題目點撥】本題考查的知識點是專題:正方體相對兩個面上的文字,解題的關鍵是熟練的掌握正方體相對兩個面上的文字.2、B【解題分析】分析:根據(jù)一元二次方程根的判別式判斷即可.詳解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有兩個相等實數(shù)根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有兩個不相等實數(shù)根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程無實根;D、(x-1)2+1=0.(x-1)2=-1,則方程無實根;故選B.點睛:本題考查的是一元二次方程根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的實數(shù)根;②當△=0時,方程有兩個相等的實數(shù)根;③當△<0時,方程無實數(shù)根.3、C.【解題分析】試題分析:如答圖,過點O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據(jù)勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點:1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數(shù)定義.4、D【解題分析】

先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【題目詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【題目點撥】本題考查解直角三角形,三角函數(shù)值只與角的大小有關,因而求一個角的函數(shù)值,可以轉化為求與它相等的其它角的三角函數(shù)值.5、D【解題分析】

首先過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,易得△OBD∽△AOC,又由點A,B分別在反比例函數(shù)y=(x<0),y=(x>0)的圖象上,即可得S△OBD=,S△AOC=|k|,然后根據(jù)相似三角形面積的比等于相似比的平方,即可求出k的值【題目詳解】解:過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,

∴∠ACO=∠ODB=90°,

∴∠OBD+∠BOD=90°,

∵∠AOB=90°,

∴∠BOD+∠AOC=90°,

∴∠OBD=∠AOC,

∴△OBD∽△AOC,

又∵∠AOB=90°,tan∠BAO=,

∴=,

∴=,即,

解得k=±4,

又∵k<0,

∴k=-4,

故選:D.【題目點撥】此題考查了相似三角形的判定與性質(zhì)、反比例函數(shù)的性質(zhì)以及直角三角形的性質(zhì).解題時注意掌握數(shù)形結合思想的應用,注意掌握輔助線的作法。6、B【解題分析】

根據(jù)余角的性質(zhì),可得∠DCA與∠CBE的關系,根據(jù)AAS可得△ACD與△CBE的關系,根據(jù)全等三角形的性質(zhì),可得AD與CE的關系,根據(jù)線段的和差,可得答案.【題目詳解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE?CD=3?1=2,故答案選:B.【題目點撥】本題考查了全等三角形的判定與性質(zhì),解題的關鍵是熟練的掌握全等三角形的判定與性質(zhì).7、C【解題分析】【分析】分析題意,根據(jù)“每人出8錢,會多3錢;每人出7錢,又會差4錢,”可分別列出方程.【題目詳解】設合伙人數(shù)為x人,物價為y錢,根據(jù)題意得故選C【題目點撥】本題考核知識點:列方程組解應用題.解題關鍵點:找出相等關系,列出方程.8、B【解題分析】

利用多邊形的外角和是360°,正多邊形的每個外角都是36°,即可求出答案.【題目詳解】解:360°÷36°=10,所以這個正多邊形是正十邊形.故選:B.【題目點撥】本題主要考查了多邊形的外角和定理.是需要識記的內(nèi)容.9、B【解題分析】

根據(jù)去括號法則,積的乘方的性質(zhì),完全平方公式,合并同類項法則,對各選項分析判斷后利用排除法求解.【題目詳解】解:A、因為﹣(a﹣1)=﹣a+1,故本選項錯誤;B、(﹣2a3)2=4a6,正確;C、因為(a﹣b)2=a2﹣2ab+b2,故本選項錯誤;D、因為a3與a2不是同類項,而且是加法,不能運算,故本選項錯誤.故選B.【題目點撥】本題考查了合并同類項,積的乘方,完全平方公式,理清指數(shù)的變化是解題的關鍵.10、C【解題分析】

因為R不動,所以AR不變.根據(jù)三角形中位線定理可得EF=AR,因此線段EF的長不變.【題目詳解】如圖,連接AR,∵E、F分別是AP、RP的中點,∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長不改變.故選:C.【題目點撥】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應的中位線的長度就不變.二、填空題(本大題共6個小題,每小題3分,共18分)11、或【解題分析】

作PH⊥CD,垂足為H,設運動時間為t秒,用t表示線段長,用勾股定理列方程求解.【題目詳解】設P,Q兩點從出發(fā)經(jīng)過t秒時,點P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點從出發(fā)經(jīng)過1.6或4.8秒時,點P,Q間的距離是10cm.故答案為或.【題目點撥】考查矩形的性質(zhì),勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關鍵.12、十【解題分析】

先求出每一個外角的度數(shù),再根據(jù)邊數(shù)=360°÷外角的度數(shù)計算即可.【題目詳解】解:180°﹣144°=36°,360°÷36°=1,∴這個多邊形的邊數(shù)是1.故答案為十.【題目點撥】本題主要考查了多邊形的內(nèi)角與外角的關系,求出每一個外角的度數(shù)是關鍵.13、①②③【解題分析】

由公交車在7至12分鐘時間內(nèi)行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時間,進而可知小剛上公交車的時間;由上公交車到他到達學校共用10分鐘以及公交車行駛時間可知小剛跑步時間,進而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向?qū)W校的速度.【題目詳解】解:公交車7至12分鐘時間內(nèi)行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時,公交車行駛的距離為1200-400=800m,則公交車行駛的時間為800÷400=2min,則小剛從家出發(fā)7-2=5分鐘時乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學校一共花了10-7=3分鐘<4分鐘,故④錯誤,再由圖可知小明跑步時間為300÷3=100米/分鐘,故③正確.故正確的序號是:①②③.【題目點撥】本題考查了一次函數(shù)的應用.14、(1)-2;(2)【解題分析】

(1)設點P的坐標為(m,n),則點Q的坐標為(m?1,n+2),依題意得:,解得:k=?2.故答案為?2.(2)∵BO⊥x軸,CE⊥x軸,∴BO∥CE,∴△AOB∽△AEC.又∵,∴令一次函數(shù)y=?2x+b中x=0,則y=b,∴BO=b;令一次函數(shù)y=?2x+b中y=0,則0=?2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且,∴,∴AE=,AO=,CE=BO=b,OE=AE?AO=.∵OE?CE=|?4|=4,即=4,解得:b=,或b=?(舍去).故答案為.15、1【解題分析】

分別算三角函數(shù),再化簡即可.【題目詳解】解:原式=-2×-×=1.【題目點撥】本題考查掌握簡單三角函數(shù)值,較基礎.16、1【解題分析】

首先證明AB=AC=a,根據(jù)條件可知PA=AB=AC=a,求出⊙D上到點A的最大距離即可解決問題.【題目詳解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如圖延長AD交⊙D于P′,此時AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值為1.故答案為1.【題目點撥】圓外一點到圓上一點的距離最大值為點到圓心的距離加半徑,最小值為點到圓心的距離減去半徑.三、解答題(共8題,共72分)17、(1)答案見解析;(2)AB=1BE;(1)1.【解題分析】試題分析:(1)先判斷出∠OCF+∠CFO=90°,再判斷出∠OCF=∠ODF,即可得出結論;(2)先判斷出∠BDE=∠A,進而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出結論;(1)設BE=x,則DE=EF=2x,AB=1x,半徑OD=x,進而得出OE=1+2x,最后用勾股定理即可得出結論.試題解析:(1)證明:連結OD,如圖.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵點D在⊙O上,∴DE是⊙O的切線;(2)線段AB、BE之間的數(shù)量關系為:AB=1BE.證明如下:∵AB為⊙O直徑,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴.∵Rt△ABD中,tanA==,∴=,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;(1)設BE=x,則DE=EF=2x,AB=1x,半徑OD=x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圓O的半徑為1.點睛:本題是圓的綜合題,主要考查了切線的判定和性質(zhì),等腰三角形的性質(zhì),銳角三角函數(shù),相似三角形的判定和性質(zhì),勾股定理,判斷出△EBD∽△EDA是解答本題的關鍵.18、(1)5;(2)-3x+4【解題分析】

(1)第一項計算算術平方根,第二項計算零指數(shù)冪,第三項計算特殊角的三角函數(shù)值,最后計算有理數(shù)運算.(2)利用完全平方公式和去括號法則進行計算,再進行合并同類項運算.【題目詳解】(1)解:原式(2)解:原式【題目點撥】本題考查實數(shù)的混合運算和整式運算,解題關鍵是熟練運用完全平方公式和熟記特殊角的三角函數(shù)值.19、(1),;(2)點的坐標為;(3)點的坐標為和【解題分析】

(1)根據(jù)二次函數(shù)的對稱軸公式,拋物線上的點代入,即可;(2)先求F的對稱點,代入直線BE,即可;(3)構造新的二次函數(shù),利用其性質(zhì)求極值.【題目詳解】解:(1)軸,,拋物線對稱軸為直線點的坐標為解得或(舍去),(2)設點的坐標為對稱軸為直線點關于直線的對稱點的坐標為.直線經(jīng)過點利用待定系數(shù)法可得直線的表達式為.因為點在上,即點的坐標為(3)存在點滿足題意.設點坐標為,則作垂足為①點在直線的左側時,點的坐標為點的坐標為點的坐標為在中,時,取最小值.此時點的坐標為②點在直線的右側時,點的坐標為同理,時,取最小值.此時點的坐標為綜上所述:滿足題意得點的坐標為和考點:二次函數(shù)的綜合運用.20、【解題分析】

根據(jù)分式運算性質(zhì),先化簡,再求出方程的根a=0或-1,分式有意義分母不等于0,所以將a=-1代入即可求解.【題目詳解】解:原式==∵a(a+1)=0,解得:a=0或-1,由題可知分式有意義,分母不等于0,∴a=-1,將a=-1代入得,原式=【題目點撥】本題考查了分式的化簡求值,中等難度,根據(jù)分式有意義的條件代值計算是解題關鍵.21、(1)購買一個A種品牌的足球需要50元,購買一個B種品牌的足球需要80元;(2)有三種方案,具體見解析;(3)3150元.【解題分析】試題分析:(1)、設A種品牌足球的單價為x元,B種品牌足球的單價為y元,根據(jù)題意列出二元一次方程組,從而求出x和y的值得出答案;(2)、設第二次購買A種足球m個,則購買B種足球(50-m)個,根據(jù)題意列出不等式組求出m的取值范圍,從而得出答案;(3)、分別求出第二次購買時足球的單件,然后得出答案.試題解析:(1)設A種品牌足球的單價為x元,B種品牌足球的單價為y元,解得(2)設第二次購買A種足球m個,則購買B種足球(50-m)個,解得25≤m≤27∵m為整數(shù)∴m=25、26、27(3)∵第二次購買足球時,A種足球單價為50+4=54(元),B種足球單價為80×0.9=72∴當購買B種足球越多時,費用越高此時25×54+25×72=3150(元)22、(1)見解析;(1)1【解題分析】

(1)根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論