版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省哈爾濱市南崗區(qū)“FF聯盟”市級名校2024屆中考聯考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,BC∥DE,若∠A=35°,∠E=60°,則∠C等于()A.60° B.35° C.25° D.20°2.如圖,是的直徑,弦,,,則陰影部分的面積為()A.2π B.π C. D.3.在3,0,-2,-2四個數中,最小的數是()A.3 B.0 C.-2 D.-24.四個有理數﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣35.若一次函數y=(2m﹣3)x﹣1+m的圖象不經過第三象限,則m的取值范圖是()A.1<m< B.1≤m< C.1<m≤ D.1≤m≤6.全球芯片制造已經進入10納米到7納米器件的量產時代.中國自主研發(fā)的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設備之一,7納米就是0.000000007米.數據0.000000007用科學記數法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣107.滴滴快車是一種便捷的出行工具,計價規(guī)則如下表:計費項目
里程費
時長費
遠途費
單價
1.8元/公里
0.3元/分鐘
0.8元/公里
注:車費由里程費、時長費、遠途費三部分構成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為:行車里程7公里以內(含7公里)不收遠途費,超過7公里的,超出部分每公里收0.8元.
小王與小張各自乘坐滴滴快車,行車里程分別為6公里與8.5公里,如果下車時兩人所付車費相同,那么這兩輛滴滴快車的行車時間相差()A.10分鐘 B.13分鐘 C.15分鐘 D.19分鐘8.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.49.已知關于x的一元二次方程3x2+4x﹣5=0,下列說法正確的是()A.方程有兩個相等的實數根B.方程有兩個不相等的實數根C.沒有實數根D.無法確定10.在平面直角坐標系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點橫坐標差的最大值,“鉛垂高”h:任意兩點縱坐標差的最大值,則“矩面積”S=ah.例如:三點坐標分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或6二、填空題(本大題共6個小題,每小題3分,共18分)11.將函數y=3x+1的圖象沿y軸向下平移2個單位長度,所得直線的函數表達式為_____.12.如圖,已知AE∥BD,∠1=130°,∠2=28°,則∠C的度數為____.13.為了綠化校園,30名學生共種78棵樹苗,其中男生每人種3棵,女生每人種2棵,設男生有x人,女生有y人,根據題意,所列方程組正確的是()A. B. C. D.14.在△ABC中,點D在邊BC上,BD=2CD,,,那么=.15.一組正方形按如圖所示的方式放置,其中頂點B1在y軸上,頂點C1,E1,E2,C2,E3,E4,C3……在x軸上,已知正方形A1B1C1D1的頂點C1的坐標是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……則正方形A2018B2018C2018D2018的頂點D2018縱坐標是_____.16.近年來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為進一步普及環(huán)保和健康知識,我市某校舉行了“建設宜居成都,關注環(huán)境保護”的知識競賽,某班的學生成績統(tǒng)計如下:成績(分)60708090100人數4812115則該辦學生成績的眾數和中位數分別是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分三、解答題(共8題,共72分)17.(8分)如圖,某校一幢教學大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結果精確到0.1米.參考數據:≈1.414,≈1.732)18.(8分)如圖所示,在長和寬分別是a、b的矩形紙片的四個角都剪去一個邊長為x的正方形.(1)用a,b,x表示紙片剩余部分的面積;(2)當a=6,b=4,且剪去部分的面積等于剩余部分的面積時,求正方形的邊長.19.(8分)解方程:.20.(8分)定義:和三角形一邊和另兩邊的延長線同時相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點,AD⊥IC于點D.(1)試探究:D、E、F三點是否同在一條直線上?證明你的結論.(2)設AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以,為兩根且二次項系數為6的一個一元二次方程.21.(8分)如圖,熱氣球的探測器顯示,從熱氣球A看一棟髙樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,求這棟高樓BC的高度.22.(10分)如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).(1)求該拋物線的解析式;(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.23.(12分)龐亮和李強相約周六去登山,龐亮從北坡山腳C處出發(fā),以24米/分鐘的速度攀登,同時,李強從南坡山腳B處出發(fā).如圖,已知小山北坡的坡度,山坡長為240米,南坡的坡角是45°.問李強以什么速度攀登才能和龐亮同時到達山頂A?(將山路AB、AC看成線段,結果保留根號)24.(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
先根據平行線的性質得出∠CBE=∠E=60°,再根據三角形的外角性質求出∠C的度數即可.【題目詳解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故選C.【題目點撥】本題考查了平行線的性質、三角形外角的性質,熟練掌握三角形外角的性質是解題的關鍵.2、D【解題分析】分析:連接OD,則根據垂徑定理可得出CE=DE,繼而將陰影部分的面積轉化為扇形OBD的面積,代入扇形的面積公式求解即可.詳解:連接OD,∵CD⊥AB,∴(垂徑定理),故即可得陰影部分的面積等于扇形OBD的面積,又∵∴(圓周角定理),∴OC=2,故S扇形OBD=即陰影部分的面積為.故選D.點睛:考查圓周角定理,垂徑定理,扇形面積的計算,熟記扇形的面積公式是解題的關鍵.3、C【解題分析】
根據比較實數大小的方法進行比較即可.根據正數都大于0,負數都小于0,兩個負數絕對值大的反而小即可求解.【題目詳解】因為正數大于負數,兩個負數比較大小,絕對值較大的數反而較小,所以-2<-2所以最小的數是-2,故選C.【題目點撥】此題主要考查了實數的大小的比較,正數都大于0,負數都小于0,兩個負數絕對值大的反而?。?、D【解題分析】解:∵-1<-1<0<2,∴最小的是-1.故選D.5、B【解題分析】
根據一次函數的性質,根據不等式組即可解決問題;【題目詳解】∵一次函數y=(2m-3)x-1+m的圖象不經過第三象限,∴,解得1≤m<.故選:B.【題目點撥】本題考查一次函數的圖象與系數的關系等知識,解題的關鍵是學會用轉化的思想思考問題,屬于中考??碱}型.6、C【解題分析】
本題根據科學記數法進行計算.【題目詳解】因為科學記數法的標準形式為a×(1≤|a|≤10且n為整數),因此0.000000007用科學記數法法可表示為7×,故選C.【題目點撥】本題主要考察了科學記數法,熟練掌握科學記數法是本題解題的關鍵.7、D【解題分析】
設小王的行車時間為x分鐘,小張的行車時間為y分鐘,根據計價規(guī)則計算出小王的車費和小張的車費,建立方程求解.【題目詳解】設小王的行車時間為x分鐘,小張的行車時間為y分鐘,依題可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案為D.【題目點撥】本題考查列方程解應用題,讀懂表格中的計價規(guī)則是解題的關鍵.8、C【解題分析】
∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點:相似三角形的判定與性質.9、B【解題分析】試題分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有兩個不相等的實數根.故答案選B.考點:一元二次方程根的判別式.10、C【解題分析】
由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進行求解即可.【題目詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當t>2時,t-1=6,解得t=7;當t<1時,2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【題目點撥】本題考查了平面直角坐標系的內容,理解題意是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、y=3x-1【解題分析】∵y=3x+1的圖象沿y軸向下平移2個單位長度,∴平移后所得圖象對應的函數關系式為:y=3x+1﹣2,即y=3x﹣1.故答案為y=3x﹣1.12、22°【解題分析】
由AE∥BD,根據平行線的性質求得∠CBD的度數,再由對頂角相等求得∠CDB的度數,繼而利用三角形的內角和等于180°求得∠C的度數.【題目詳解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案為22°【題目點撥】本題考查了平行線的性質,對頂角相等及三角形內角和定理.熟練運用相關知識是解決問題的關鍵.13、A【解題分析】
該班男生有x人,女生有y人.根據題意得:,故選D.考點:由實際問題抽象出二元一次方程組.14、【解題分析】
首先利用平行四邊形法則,求得的值,再由BD=2CD,求得的值,即可求得的值.【題目詳解】∵,,∴=-=-,∵BD=2CD,∴==,∴=+==.故答案為.15、×()2【解題分析】
利用正方形的性質結合銳角三角函數關系得出正方形的邊長,進而得出變化規(guī)律即可得出答案.【題目詳解】解:∵∠B1C1O=60°,C1O=,∴B1C1=1,∠D1C1E1=30°,∵sin∠D1C1E1=,∴D1E1=,∵B1C1∥B2C2∥B3C3∥…∴60°=∠B1C1O=∠B2C2O=∠B3C3O=…∴B2C2=,B3C3=.故正方形AnBnCnDn的邊長=()n-1.∴B2018C2018=()2.∴D2018E2018=×()2,∴D的縱坐標為×()2,故答案為×()2.【題目點撥】此題主要考查了正方形的性質以及銳角三角函數關系,得出正方形的邊長變化規(guī)律是解題關鍵16、B.【解題分析】試題分析:眾數是在一組數據中,出現次數最多的數據,這組數據中80出現12次,出現的次數最多,故這組數據的眾數為80分;中位數是一組數據從小到大(或從大到?。┡帕泻螅钪虚g的那個數(最中間兩個數的平均數).因此這組40個按大小排序的數據中,中位數是按從小到大排列后第20,21個數的平均數,而第20,21個數都在80分組,故這組數據的中位數為80分.故選B.考點:1.眾數;2.中位數.三、解答題(共8題,共72分)17、2.7米【解題分析】解:作BF⊥DE于點F,BG⊥AE于點G在Rt△ADE中∵tan∠ADE=,∴DE="AE"·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7答:這塊宣傳牌CD的高度為2.7米.18、(1)ab﹣4x1(1)【解題分析】
(1)邊長為x的正方形面積為x1,矩形面積減去4個小正方形的面積即可.(1)依據剪去部分的面積等于剩余部分的面積,列方程求出x的值即可.【題目詳解】解:(1)ab﹣4x1.(1)依題意有:,將a=6,b=4,代入上式,得x1=2.解得x1=,x1=(舍去).∴正方形的邊長為.19、【解題分析】分析:此題應先將原分式方程兩邊同時乘以最簡公分母,則原分式方程可化為整式方程,解出即可.詳解:去分母,得.去括號,得.移項,得.合并同類項,得.系數化為1,得.經檢驗,原方程的解為.點睛:本題主要考查分式方程的解法.注意:解分式方程必須檢驗.20、(1)D、E、F三點是同在一條直線上.(2)6x2﹣13x+6=1.【解題分析】(1)利用切線長定理及梅氏定理即可求證;(2)利用相似和韋達定理即可求解.解:(1)結論:D、E、F三點是同在一條直線上.證明:分別延長AD、BC交于點K,由旁切圓的定義及題中已知條件得:AD=DK,AC=CK,再由切線長定理得:AC+CE=AF,BE=BF,∴KE=AF.∴,由梅涅勞斯定理的逆定理可證,D、E、F三點共線,即D、E、F三點共線.(2)∵AB=AC=5,BC=6,∴A、E、I三點共線,CE=BE=3,AE=4,連接IF,則△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四點共圓.設⊙I的半徑為r,則:,∴,即,,∴由△AEF∽△DEI得:,∴.∴,因此,由韋達定理可知:分別以、為兩根且二次項系數為6的一個一元二次方程是6x2﹣13x+6=1.點睛:本是一道關于圓的綜合題.正確分析圖形并應用圖形的性質是解題的關鍵.21、這棟高樓的高度是【解題分析】
過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據三角函數的定義求得BD和CD,再根據BC=BD+CD即可求解.【題目詳解】過點A作AD⊥BC于點D,依題意得,,,AD=120,在Rt△ABD中,∴,在Rt△ADC中,∴,∴,答:這棟高樓的高度是.【題目點撥】本題主要考查了解直角三角形的應用-仰角俯角問題,難度適中.對于一般三角形的計算,常用的方法是利用作高線轉化為直角三角形的計算.22、(1)y=﹣;(1)點K的坐標為(,0);(2)點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【解題分析】試題分析:(1)把A、C兩點坐標代入拋物線解析式可求得a、c的值,可求得拋物線解析;(1)可求得點C關于x軸的對稱點C′的坐標,連接C′N交x軸于點K,再求得直線C′K的解析式,可求得K點坐標;(2)過點E作EG⊥x軸于點G,設Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關于m的解析式,再根據二次函數的性質可求得Q點的坐標;(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據等腰三角形的性質求得F點的坐標,進一步求得P點坐標即可.試題解析:(1)∵拋物線經過點C(0,4),A(4,0),∴,解得,∴拋物線解析式為y=﹣x1+x+4;(1)由(1)可求得拋物線頂點為N(1,),如圖1,作點C關于x軸的對稱點C′(0,﹣4),連接C′N交x軸于點K,則K點即為所求,設直線C′N的解析式為y=kx+b,把C′、N點坐標代入可得,解得,∴直線C′N的解析式為y=x-4,令y=0,解得x=,∴點K的坐標為(,0);(2)設點Q(m,0),過點E作EG⊥x軸于點G,如圖1,由﹣x1+x+4=0,得x1=﹣1,x1=4,∴點B的坐標為(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴,即,解得EG=;∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)==-(m-1)1+2.又∵﹣1≤m≤4,∴當m=1時,S△CQE有最大值2,此時Q(1,0);(4)存在.在△ODF中,(?。┤鬌O=DF,∵A(4,0),D(1,0),∴AD=OD=DF=1.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此時,點F的坐標為(1,1).由﹣x1+x+4=1,得x1=1+,x1=1﹣.此時,點P的坐標為:P1(1+,1)或P1(1﹣,1);(ⅱ)若FO=FD,過點F作FM⊥x軸于點M.由等腰三角形的性質得:OM=OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣x1+x+4=2,得x1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年廢舊材料銷售框架合同
- 文書模板-裝卸貨高空作業(yè)合同
- 2024年建筑工程分包合同
- 玫瑰的課件教學課件
- 2024年人工智能教育平臺開發(fā)合同
- 2024醫(yī)療設備維修公司關于超聲波機器保修服務合同
- 停電停氣應急預案(6篇)
- 2024年建筑工程機電安裝分包協(xié)議
- 2024年庫房租賃與無人機測試存放合同
- 2024年專業(yè)咨詢合作協(xié)議
- 妊娠晚期促子宮頸成熟與引產指南
- 2022年中國鐵路國際有限公司校園招聘筆試試題及答案解析
- 海姆立克急救法完整版本課件
- 《離騷》課件教材
- 巴斯夫蘋果病害課件
- 燙金工藝基礎知識培訓課件
- 《格列佛游記》 課件
- 農藥生產安全管理檢查表
- 什物拼貼-完整版PPT
- 四年級英語上冊課件-Unit 4 My home-人教PEP版(共20張PPT)
- ERP系統(tǒng)集成項目實施與管理方案
評論
0/150
提交評論