遼寧省大連市中山區(qū)2024屆中考數學猜題卷含解析_第1頁
遼寧省大連市中山區(qū)2024屆中考數學猜題卷含解析_第2頁
遼寧省大連市中山區(qū)2024屆中考數學猜題卷含解析_第3頁
遼寧省大連市中山區(qū)2024屆中考數學猜題卷含解析_第4頁
遼寧省大連市中山區(qū)2024屆中考數學猜題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省大連市中山區(qū)2024屆中考數學猜題卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.《九章算術》中有這樣一個問題:“今有甲乙二人持錢不知其數,甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?”題意為:今有甲乙二人,不知其錢包里有多少錢,若乙把其一半的錢給甲,則甲的錢數為50;而甲把其的錢給乙,則乙的錢數也能為50,問甲、乙各有多少錢?設甲的錢數為x,乙的錢數為y,則列方程組為()A. B.C. D.2.如圖,是由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,則拿掉這個小立方體木塊之后的幾何體的俯視圖是()A. B. C. D.3.已知,下列說法中,不正確的是()A. B.與方向相同C. D.4.下列計算正確的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-45.下列二次根式中,的同類二次根式是()A. B. C. D.6.(2011貴州安順,4,3分)我市某一周的最高氣溫統(tǒng)計如下表:最高氣溫(℃)

25

26

27

28

天數

1

1

2

3

則這組數據的中位數與眾數分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,277.已知二次函數圖象上部分點的坐標對應值列表如下:x…-3-2-1012…y…2-1-2-127…則該函數圖象的對稱軸是()A.x=-3 B.x=-2 C.x=-1 D.x=08.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,DE:EC=2:3,則S△DEF:S△ABF=()A.2:3 B.4:9 C.2:5 D.4:259.如圖,等腰△ABC中,AB=AC=10,BC=6,直線MN垂直平分AB交AC于D,連接BD,則△BCD的周長等于()A.13 B.14 C.15 D.1610.若正比例函數y=kx的圖象上一點(除原點外)到x軸的距離與到y(tǒng)軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.將直線y=x+b沿y軸向下平移3個單位長度,點A(-1,2)關于y軸的對稱點落在平移后的直線上,則b的值為____.12.為了節(jié)約用水,某市改進居民用水設施,在2017年幫助居民累計節(jié)約用水305000噸,將數字305000用科學記數法表示為________.13.若一次函數y=﹣2(x+1)+4的值是正數,則x的取值范圍是_______.14.如圖,矩形ABCD中,如果以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,那么的值等于________.(結果保留兩位小數)15.計算:×(﹣2)=___________.16.若分式的值為正數,則x的取值范圍_____.三、解答題(共8題,共72分)17.(8分)如圖,△ABC中,∠A=90°,AB=AC=4,D是BC邊上一點,將點D繞點A逆時針旋轉60°得到點E,連接CE.(1)當點E在BC邊上時,畫出圖形并求出∠BAD的度數;(2)當△CDE為等腰三角形時,求∠BAD的度數;(3)在點D的運動過程中,求CE的最小值.(參考數值:sin75°=,cos75°=,tan75°=)18.(8分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,過B點的切線交OP于點C.求證:∠CBP=∠ADB.若OA=2,AB=1,求線段BP的長.19.(8分)關于x的一元二次方程x2﹣(2m﹣3)x+m2+1=1.(1)若m是方程的一個實數根,求m的值;(2)若m為負數,判斷方程根的情況.20.(8分)若一個三位數的十位數字比個位數字和百位數字都大,則稱這個數為“傘數”.現從1,2,3,4這四個數字中任取3個數,組成無重復數字的三位數.(1)請畫出樹狀圖并寫出所有可能得到的三位數;(2)甲、乙二人玩一個游戲,游戲規(guī)則是:若組成的三位數是“傘數”,則甲勝;否則乙勝.你認為這個游戲公平嗎?試說明理由.21.(8分)如圖,頂點為C的拋物線y=ax2+bx(a>0)經過點A和x軸正半軸上的點B,連接OC、OA、AB,已知OA=OB=2,∠AOB=120°.(1)求這條拋物線的表達式;(2)過點C作CE⊥OB,垂足為E,點P為y軸上的動點,若以O、C、P為頂點的三角形與△AOE相似,求點P的坐標;(3)若將(2)的線段OE繞點O逆時針旋轉得到OE′,旋轉角為α(0°<α<120°),連接E′A、E′B,求E′A+E′B的最小值.22.(10分)已知,關于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判斷此方程根的情況;(2)若x=2是該方程的一個根,求m的值.23.(12分)某網店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,健民體育活動中心從該網店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網店甲、乙兩種羽毛球每筒的售價各是多少元?根據健民體育活動中心消費者的需求量,活動中心決定用不超過2550元錢購進甲、乙兩種羽毛球共50筒,那么最多可以購進多少筒甲種羽毛球?24.如圖,一次函數y=﹣x+4的圖象與反比例函數y=(k為常數,且k≠0)的圖象交于A(1,a),B(3,b)兩點.求反比例函數的表達式在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標求△PAB的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】

設甲的錢數為x,人數為y,根據“若乙把其一半的錢給甲,則甲的錢數為50;而甲把其的錢給乙,則乙的錢數也能為50”,即可得出關于x,y的二元一次方程組,此題得解.【題目詳解】解:設甲的錢數為x,乙的錢數為y,依題意,得:.故選A.【題目點撥】本題考查了由實際問題抽象出二元一次方程組,找準等量關系,正確列出二元一次方程組是解題的關鍵.2、B【解題分析】

俯視圖是從上面看幾何體得到的圖形,據此進行判斷即可.【題目詳解】由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,得拿掉第一排的小正方形,拿掉這個小立方體木塊之后的幾何體的俯視圖是,故選B.【題目點撥】本題主要考查了簡單幾何體的三視圖,解題時注意:俯視圖就是從幾何體上面看到的圖形.3、A【解題分析】

根據平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應用.【題目詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【題目點撥】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.4、B【解題分析】【分析】根據同底數冪乘法、冪的乘方、合并同類項法則、完全平方公式逐項進行計算即可得.【題目詳解】A.a2·a2=a4,故A選項錯誤;B.(-a2)3=-a6,正確;C.3a2-6a2=-3a2,故C選項錯誤;D.(a-2)2=a2-4a+4,故D選項錯誤,故選B.【題目點撥】本題考查了同底數冪的乘法、冪的乘方、合并同類項、完全平方公式,熟練掌握各運算的運算法則是解題的關鍵.5、C【解題分析】

先將每個選項的二次根式化簡后再判斷.【題目詳解】解:A:,與不是同類二次根式;B:被開方數是2x,故與不是同類二次根式;C:=,與是同類二次根式;D:=2,與不是同類二次根式.故選C.【題目點撥】本題考查了同類二次根式的概念.6、A【解題分析】根據表格可知:數據25出現1次,26出現1次,27出現2次,28出現3次,∴眾數是28,這組數據從小到大排列為:25,26,27,27,28,28,28∴中位數是27∴這周最高氣溫的中位數與眾數分別是27,28故選A.7、C【解題分析】

由當x=-2和x=0時,y的值相等,利用二次函數圖象的對稱性即可求出對稱軸.【題目詳解】解:∵x=-2和x=0時,y的值相等,∴二次函數的對稱軸為,故答案為:C.【題目點撥】本題考查了二次函數的性質,利用二次函數圖象的對稱性找出對稱軸是解題的關鍵.8、D【解題分析】試題分析:先根據平行四邊形的性質及相似三角形的判定定理得出△DEF∽△BAF,從而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25試題解析:∵四邊形ABCD是平行四邊形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考點:1.相似三角形的判定與性質;2.三角形的面積;3.平行四邊形的性質.9、D【解題分析】

由AB的垂直平分MN交AC于D,根據線段垂直平分線的性質,即可求得AD=BD,又由△CDB的周長為:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【題目詳解】解:∵MN是線段AB的垂直平分線,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周長=AC+BC=10+6=16,故選D.【題目點撥】此題考查了線段垂直平分線的性質,比較簡單,注意數形結合思想與轉化思想的應用.10、B【解題分析】

設該點的坐標為(a,b),則|b|=1|a|,利用一次函數圖象上的點的坐標特征可得出k=±1,再利用正比例函數的性質可得出k=-1,此題得解.【題目詳解】設該點的坐標為(a,b),則|b|=1|a|,∵點(a,b)在正比例函數y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【題目點撥】本題考查了一次函數圖象上點的坐標特征以及正比例函數的性質,利用一次函數圖象上點的坐標特征,找出k=±1是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解題分析】試題分析:先根據一次函數平移規(guī)律得出直線y=x+b沿y軸向下平移3個單位長度后的直線解析式y(tǒng)=x+b﹣3,再把點A(﹣1,2)關于y軸的對稱點(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=1.故答案為1.考點:一次函數圖象與幾何變換12、【解題分析】試題解析:305000用科學記數法表示為:故答案為13、x<1【解題分析】

根據一次函數的性質得出不等式解答即可.【題目詳解】因為一次函數y=﹣2(x+1)+4的值是正數,可得:﹣2(x+1)+4>0,解得:x<1,故答案為x<1.【題目點撥】本題考查了一次函數與一元一次不等式,根據題意正確列出不等式是解題的關鍵.14、3.1【解題分析】分析:由題意可知:BC的長就是⊙O的周長,列式即可得出結論.詳解:∵以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,∴BC的長就是⊙O的周長,∴π?AB=BC,∴=π≈3.1.故答案為3.1.點睛:本題考查了圓的周長以及線段的比.解題的關鍵是弄懂BC的長就是⊙O的周長.15、-1【解題分析】

根據“兩數相乘,異號得負,并把絕對值相乘”即可求出結論.【題目詳解】故答案為【題目點撥】本題考查了有理數的乘法,牢記“兩數相乘,同號得正,異號得負,并把絕對值相乘”是解題的關鍵.16、x>1【解題分析】試題解析:由題意得:>0,∵-6<0,∴1-x<0,∴x>1.三、解答題(共8題,共72分)17、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解題分析】

(1)如圖1中,當點E在BC上時.只要證明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分兩種情形求解①如圖2中,當BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形.②如圖3中,當CD=CE時,△DEC是等腰三角形;(3)如圖4中,當E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先確定點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),可得EC的最小值即為線段CM的長(垂線段最短).【題目詳解】解:(1)如圖1中,當點E在BC上時.

∵AD=AE,∠DAE=60°,∴△ADE是等邊三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=(90°-60°)=15°.(2)①如圖2中,當BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形,∠BAD=∠BAC=45°.

②如圖3中,當CD=CE時,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分線段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.

(3)如圖4中,當E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.

∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),∴EC的最小值即為線段CM的長(垂線段最短),設E′N=CN=a,則AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴2+=,∴a=2-,∴CE′=CN=2-.在Rt△CE′M中,CM=CE′?cos30°=,∴CE的最小值為.【題目點撥】本題考查幾何變換綜合題、等腰直角三角形的性質、等邊三角形的性質、全等三角形的判定和性質、相似三角形的判定和性質、軌跡等知識,解題的關鍵是靈活運用所學知識解決問題,學會用分類討論的思想思考問題,學會利用垂線段最短解決最值問題,屬于中考壓軸題.18、(1)證明見解析;(2)BP=1.【解題分析】分析:(1)連接OB,如圖,根據圓周角定理得到∠ABD=90°,再根據切線的性質得到∠OBC=90°,然后利用等量代換進行證明;(2)證明△AOP∽△ABD,然后利用相似比求BP的長.詳(1)證明:連接OB,如圖,∵AD是⊙O的直徑,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC為切線,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴,即,∴BP=1.點睛:本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.也考查了圓周角定理和相似三角形的判定與性質.19、(1);(2)方程有兩個不相等的實根.【解題分析】分析:(1)由方程根的定義,代入可得到關于m的方程,則可求得m的值;

(2)計算方程根的判別式,判斷判別式的符號即可.詳解:(1)∵m是方程的一個實數根,

∴m2-(2m-3)m+m2+1=1,

∴m=?;

(2)△=b2-4ac=-12m+5,

∵m<1,

∴-12m>1.

∴△=-12m+5>1.

∴此方程有兩個不相等的實數根.點睛:考查根的判別式,熟練掌握一元二次方程根的個數與根的判別式的關系是解題的關鍵.20、(1)見解析(2)不公平。理由見解析【解題分析】解:(1)畫樹狀圖得:所有得到的三位數有24個,分別為:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432。(2)這個游戲不公平。理由如下:∵組成的三位數中是“傘數”的有:132,142,143,231,241,243,341,342,共有8個,∴甲勝的概率為824=1∵甲勝的概率≠乙勝的概率,∴這個游戲不公平。(1)首先根據題意畫出樹狀圖,由樹狀圖即可求得所有可能得到的三位數。(2)由(1),可求得甲勝和乙勝的概率,比較是否相等即可得到答案。21、(1)y=x2﹣x;(2)點P坐標為(0,)或(0,);(3).【解題分析】

(1)根據AO=OB=2,∠AOB=120°,求出A點坐標,以及B點坐標,進而利用待定系數法求二次函數解析式;(2)∠EOC=30°,由OA=2OE,OC=,推出當OP=OC或OP′=2OC時,△POC與△AOE相似;(3)如圖,取Q(,0).連接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是線段AQ的長.【題目詳解】(1)過點A作AH⊥x軸于點H,∵AO=OB=2,∠AOB=120°,∴∠AOH=60°,∴OH=1,AH=,∴A點坐標為:(-1,),B點坐標為:(2,0),將兩點代入y=ax2+bx得:,解得:,∴拋物線的表達式為:y=x2-x;(2)如圖,∵C(1,-),∴tan∠EOC=,∴∠EOC=30°,∴∠POC=90°+30°=120°,∵∠AOE=120°,∴∠AOE=∠POC=120°,∵OA=2OE,OC=,∴當OP=OC或OP′=2OC時,△POC與△AOE相似,∴OP=,OP′=,∴點P坐標為(0,)或(0,).(3)如圖,取Q(,0).連接AQ,QE′.∵,∠QOE′=∠BOE′,∴△OE′Q∽△OBE′,∴,∴E′Q=BE′,∴AE′+BE′=AE′+QE′,∵AE′+E′Q≥AQ,∴E′A+E′B的最小值就是線段AQ的長,最小值為.【題目點撥】本題考查二次函數綜合題、解直角三角形、相似三角形的判定和性質、兩點之間線段最短等知識,解題的關鍵是學會由分類討論的思想思考問題,學會構造相似三角形解決最短問題,屬于中考壓軸題.22、(1)證明見解析;(2)m=2或m=1.【解題分析】

(1)由△=(-m)2-4×1×(m2-1)=4>0即可得;(2)將x=2代入方程得到關于m的方程,解之可得.【題目詳解】(1)∵△=(﹣m)2﹣4×1×(m2﹣1)=m2﹣m2+4=4>0,∴方程有兩個不相等的實數根;(2)將x=2代入方程,得:4﹣2m+m2﹣1=0,整理,得:m2﹣8m+12=0,解得:m=2或m=1.【題目點撥】本題考查了根的判別式以及解一元二次方程,解題的關鍵是:(1)牢記“當△>0時,方程有兩個不相等的實數根”;(2)將x=2代入原方程求出m值.23、(1)該網店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)最多可以購進1筒甲種羽毛球.【解題分析】

(1)設該網店甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,根據“甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,購買了2筒甲種羽毛球和3筒乙種羽毛球共花費255元”,即可得出關于x,y的二元一次方程組,解之即可得出結論;(2)設購進甲種羽毛球m筒,則購進乙種羽毛球(50﹣m)筒,根據總價=單價×數量結合總

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論