河北省保定市曲陽縣2024屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
河北省保定市曲陽縣2024屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
河北省保定市曲陽縣2024屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
河北省保定市曲陽縣2024屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
河北省保定市曲陽縣2024屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省保定市曲陽縣2024屆畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形2.下列各數(shù)中是有理數(shù)的是()A.π B.0 C. D.3.關于?ABCD的敘述,不正確的是()A.若AB⊥BC,則?ABCD是矩形B.若AC⊥BD,則?ABCD是正方形C.若AC=BD,則?ABCD是矩形D.若AB=AD,則?ABCD是菱形4.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數(shù)為()A.60° B.65° C.70° D.75°5.哥哥與弟弟的年齡和是18歲,弟弟對哥哥說:“當我的年齡是你現(xiàn)在年齡的時候,你就是18歲”.如果現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.6.如圖,在正方形ABCD外側,作等邊三角形ADE,AC,BE相交于點F,則∠BFC為()A.75° B.60° C.55° D.45°7.如圖所示的幾何體是由4個大小相同的小立方體搭成,其俯視圖是()A. B. C. D.8.若A(﹣4,y1),B(﹣3,y2),C(1,y3)為二次函數(shù)y=x2﹣4x+m的圖象上的三點,則y1,y2,y3的大小關系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y29.已知,如圖,AB//CD,∠DCF=100°,則∠AEF的度數(shù)為()A.120° B.110° C.100° D.80°10.如圖,平面直角坐標系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點B坐標為(6,4),反比例函數(shù)的圖象與AB邊交于點D,與BC邊交于點E,連結DE,將△BDE沿DE翻折至△B'DE處,點B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是()A. B. C. D.11.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.212.如圖,在?ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,∠ABC的平分線交CD于點F,交AD的延長線于點H,AG與BH交于點O,連接BE,下列結論錯誤的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平面直角坐標系中,函數(shù)y=x和y=﹣x的圖象分別為直線l1,l2,過點A1(1,﹣)作x軸的垂線交11于點A2,過點A2作y軸的垂線交l2于點A3,過點A3作x軸的垂線交l1于點A4,過點A4作y軸的垂線交l2于點A5,…依次進行下去,則點A2018的橫坐標為_____.14.規(guī)定用符號表示一個實數(shù)的整數(shù)部分,例如:,.按此規(guī)定,的值為________.15.小紅沿坡比為1:的斜坡上走了100米,則她實際上升了_____米.16.反比例函數(shù)的圖象經過點和,則______.17.用科學計數(shù)器計算:2×sin15°×cos15°=_______(結果精確到0.01).18.如圖,的半徑為,點,,,都在上,,將扇形繞點順時針旋轉后恰好與扇形重合,則的長為_____.(結果保留)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別在OA,OC上.(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.20.(6分)已知關于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數(shù),方程①的根為非負數(shù).(1)求m的取值范圍;(2)若方程②有兩個整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.21.(6分)M中學為創(chuàng)建園林學校,購買了若干桂花樹苗,計劃把迎賓大道的一側全部栽上桂花樹(兩端必須各栽一棵),并且每兩棵樹的間隔相等,如果每隔5米栽1棵,則樹苗缺11棵;如果每隔6米栽1棵,則樹苗正好用完,求購買了桂花樹苗多少棵?22.(8分)在平面直角坐標系xOy中,拋物線y=mx2﹣2mx﹣3(m≠0)與x軸交于A(3,0),B兩點.(1)求拋物線的表達式及點B的坐標;(2)當﹣2<x<3時的函數(shù)圖象記為G,求此時函數(shù)y的取值范圍;(3)在(2)的條件下,將圖象G在x軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個新圖象M.若經過點C(4.2)的直線y=kx+b(k≠0)與圖象M在第三象限內有兩個公共點,結合圖象求b的取值范圍.23.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點.求一次函數(shù)與反比例函數(shù)的解析式;根據(jù)所給條件,請直接寫出不等式kx+b>的解集;過點B作BC⊥x軸,垂足為C,求S△ABC.24.(10分)某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經了解得到以下信息(如表):工程隊每天修路的長度(米)單獨完成所需天數(shù)(天)每天所需費用(元)甲隊30n600乙隊mn﹣141160(1)甲隊單獨完成這項工程所需天數(shù)n=,乙隊每天修路的長度m=(米);(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數(shù)).①當x=90時,求出乙隊修路的天數(shù);②求y與x之間的函數(shù)關系式(不用寫出x的取值范圍);③若總費用不超過22800元,求甲隊至少先修了多少米.25.(10分)如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達式.足球第一次落地點距守門員多少米?(?。┻\動員乙要搶到第二個落點,他應再向前跑多少米?26.(12分)如圖,已知矩形ABCD中,AB=3,AD=m,動點P從點D出發(fā),在邊DA上以每秒1個單位的速度向點A運動,連接CP,作點D關于直線PC的對稱點E,設點P的運動時間為t(s).(1)若m=5,求當P,E,B三點在同一直線上時對應的t的值.(2)已知m滿足:在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于2,求所有這樣的m的取值范圍.27.(12分)反比例函數(shù)在第一象限的圖象如圖所示,過點A(2,0)作x軸的垂線,交反比例函數(shù)的圖象于點M,△AOM的面積為2.求反比例函數(shù)的解析式;設點B的坐標為(t,0),其中t>2.若以AB為一邊的正方形有一個頂點在反比例函數(shù)的圖象上,求t的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】A選項,∵在△ABC中,點D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項,∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項,因為添加條件“AD平分∠BAC”結合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯誤;D選項,因為由添加的條件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.2、B【解題分析】【分析】根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),結合無理數(shù)的定義進行判斷即可得答案.【題目詳解】A、π是無限不循環(huán)小數(shù),屬于無理數(shù),故本選項錯誤;B、0是有理數(shù),故本選項正確;C、是無理數(shù),故本選項錯誤;D、是無理數(shù),故本選項錯誤,故選B.【題目點撥】本題考查了實數(shù)的分類,熟知有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù)是解題的關鍵.3、B【解題分析】

由矩形和菱形的判定方法得出A、C、D正確,B不正確;即可得出結論.【題目詳解】解:A、若AB⊥BC,則是矩形,正確;B、若,則是正方形,不正確;C、若,則是矩形,正確;D、若,則是菱形,正確;故選B.【題目點撥】本題考查了正方形的判定、矩形的判定、菱形的判定;熟練掌握正方形的判定、矩形的判定、菱形的判定是解題的關鍵.4、C【解題分析】

由等腰三角形的性質可求∠ACD=70°,由平行線的性質可求解.【題目詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.【題目點撥】本題考查了等腰三角形的性質,平行線的性質,是基礎題.5、D【解題分析】試題解析:設現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點:由實際問題抽象出二元一次方程組6、B【解題分析】

由正方形的性質和等邊三角形的性質得出∠BAE=150°,AB=AE,由等腰三角形的性質和內角和定理得出∠ABE=∠AEB=15°,再運用三角形的外角性質即可得出結果.【題目詳解】解:∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故選:B.【題目點撥】本題考查了正方形的性質、等邊三角形的性質、等腰三角形的判定與性質、三角形的外角性質;熟練掌握正方形和等邊三角形的性質,并能進行推理計算是解決問題的關鍵.7、C【解題分析】試題分析:根據(jù)三視圖的意義,可知俯視圖為從上面往下看,因此可知共有三個正方形,在一條線上.故選C.考點:三視圖8、B【解題分析】

根據(jù)函數(shù)解析式的特點,其對稱軸為x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在對稱軸左側,圖象開口向上,利用y隨x的增大而減小,可判斷y3<y2<y1.【題目詳解】拋物線y=x2﹣4x+m的對稱軸為x=2,當x<2時,y隨著x的增大而減小,因為-4<-3<1<2,所以y3<y2<y1,故選B.【題目點撥】本題考查了二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,熟練掌握二次函數(shù)的增減性是解題的關鍵.9、D【解題分析】

先利用鄰補角得到∠DCE=80°,然后根據(jù)平行線的性質求解.【題目詳解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故選D.【題目點撥】本題考查了平行線性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.10、B【解題分析】

根據(jù)矩形的性質得到,CB∥x軸,AB∥y軸,于是得到D、E坐標,根據(jù)勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據(jù)軸對稱的性質得到BF=B′F,BB′⊥ED求得BB′,設EG=x,根據(jù)勾股定理即可得到結論.【題目詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點B坐標為(6,1),∴D的橫坐標為6,E的縱坐標為1.∵D,E在反比例函數(shù)的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關于ED對稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【題目點撥】本題考查了翻折變換(折疊問題),矩形的性質,勾股定理,熟練掌握折疊的性質是解題的關鍵.11、C【解題分析】

根據(jù)左視圖是從左面看到的圖形求解即可.【題目詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【題目點撥】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.12、D【解題分析】解:∵四邊形ABCD是平行四邊形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可證BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正確.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正確.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可證EC=CG.∵DH=CG,∴DF=CE,故B正確.無法證明AE=AB,故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解題分析】

根據(jù)題意可以發(fā)現(xiàn)題目中各點的坐標變化規(guī)律,從而可以解答本題.【題目詳解】解:由題意可得,A1(1,-),A2(1,1),A3(-2,1),A4(-2,-2),A5(4,-2),…,∵2018÷4=504…2,2018÷2=1009,∴點A2018的橫坐標為:1,故答案為1.【題目點撥】本題考查一次函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,找出題目中點的橫坐標的變化規(guī)律.14、4【解題分析】

根據(jù)規(guī)定,取的整數(shù)部分即可.【題目詳解】∵,∴∴整數(shù)部分為4.【題目點撥】本題考查無理數(shù)的估值,熟記方法是關鍵.15、50【解題分析】

根據(jù)題意設鉛直距離為x,則水平距離為,根據(jù)勾股定理求出x的值,即可得到結果.【題目詳解】解:設鉛直距離為x,則水平距離為,根據(jù)題意得:,解得:(負值舍去),則她實際上升了50米,故答案為:50【題目點撥】本題考查了解直角三角形的應用,此題關鍵是用同一未知數(shù)表示出下降高度和水平前進距離.16、-1【解題分析】

先把點(1,6)代入反比例函數(shù)y=,求出k的值,進而可得出反比例函數(shù)的解析式,再把點(m,-3)代入即可得出m的值.【題目詳解】解:∵反比例函數(shù)y=的圖象經過點(1,6),∴6=,解得k=6,∴反比例函數(shù)的解析式為y=.∵點(m,-3)在此函數(shù)圖象上上,∴-3=,解得m=-1.故答案為-1.【題目點撥】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.17、0.50【解題分析】

直接使用科學計算器計算即可,結果需保留二位有效數(shù)字.【題目詳解】用科學計算器計算得0.5,故填0.50,【題目點撥】此題主要考查科學計算器的使用,注意結果保留二位有效數(shù)字.18、.【解題分析】

根據(jù)題意先利用旋轉的性質得到∠BOD=120°,則∠AOD=150°,然后根據(jù)弧長公式計算即可.【題目詳解】解:∵扇形AOB繞點O順時針旋轉120°后恰好與扇形COD重合,

∴∠BOD=120°,

∴∠AOD=∠AOB+∠BOD=30°+120°=150°,

∴的長=.

故答案為:.【題目點撥】本題考查了弧長的計算及旋轉的性質,掌握弧長公式l=(弧長為l,圓心角度數(shù)為n,圓的半徑為R)是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)見解析.【解題分析】試題分析:(1)選?、佗?,利用ASA判定△BEO≌△DFO;也可選?、冖?,利用AAS判定△BEO≌△DFO;還可選?、佗?,利用SAS判定△BEO≌△DFO;(2)根據(jù)△BEO≌△DFO可得EO=FO,BO=DO,再根據(jù)等式的性質可得AO=CO,根據(jù)兩條對角線互相平分的四邊形是平行四邊形可得結論.試題解析:證明:(1)選?、佗?,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四邊形ABCD是平行四邊形.點睛:此題主要考查了平行四邊形的判定,以及全等三角形的判定,關鍵是掌握兩條對角線互相平分的四邊形是平行四邊形.20、(1)且,;(2)當m=1時,方程的整數(shù)根為0和3.【解題分析】

(1)先解出分式方程①的解,根據(jù)分式的意義和方程①的根為非負數(shù)得出的取值;

(2)根據(jù)根與系數(shù)的關系得到x1+x2=3,,根據(jù)方程的兩個根都是整數(shù)可得m=1或.結合(1)的結論可知m1.解方程即可.【題目詳解】解:(1)∵關于x的分式方程的根為非負數(shù),∴且.又∵,且,∴解得且.又∵方程為一元二次方程,∴.綜上可得:且,.(2)∵一元二次方程有兩個整數(shù)根x1、x2,m為整數(shù),∴x1+x2=3,,∴為整數(shù),∴m=1或.又∵且,,∴m1.當m=1時,原方程可化為.解得:,.∴當m=1時,方程的整數(shù)根為0和3.【題目點撥】考查了解分式方程,一元二次方程根與系數(shù)的關系,解一元二次方程等,熟練掌握方程的解法是解題的關鍵.21、購買了桂花樹苗1棵【解題分析】分析:首先設購買了桂花樹苗x棵,然后根據(jù)題意列出一元一次方程,從而得出答案.詳解:設購買了桂花樹苗x棵,根據(jù)題意,得:5(x+11-1)=6(x-1),解得x=1.答:購買了桂花樹苗1棵.點睛:本題主要考查的是一元一次方程的應用,屬于基礎題型.解決這個問題的關鍵就是找出等量關系以及路的長度與樹的棵樹之間的關系.22、(1)拋物線的表達式為y=x2﹣2x﹣2,B點的坐標(﹣1,0);(2)y的取值范圍是﹣3≤y<1.(2)b的取值范圍是﹣<b<.【解題分析】

(1)、將點A坐標代入求出m的值,然后根據(jù)二次函數(shù)的性質求出點B的坐標;(2)、將二次函數(shù)配成頂點式,然后根據(jù)二次函數(shù)的增減性得出y的取值范圍;(2)、根據(jù)函數(shù)經過(-1,0)、(3,2)和(0,-2)、(3,2)分別求出兩個一次函數(shù)的解析式,從而得出b的取值范圍.【題目詳解】(1)∵將A(2,0)代入,得m=1,∴拋物線的表達式為y=-2x-2.令-2x-2=0,解得:x=2或x=-1,∴B點的坐標(-1,0).(2)y=-2x-2=-3.∵當-2<x<1時,y隨x增大而減小,當1≤x<2時,y隨x增大而增大,∴當x=1,y最小=-3.又∵當x=-2,y=1,∴y的取值范圍是-3≤y<1.(2)當直線y=kx+b經過B(-1,0)和點(3,2)時,解析式為y=x+.當直線y=kx+b經過(0,-2)和點(3,2)時,解析式為y=x-2.由函數(shù)圖象可知;b的取值范圍是:-2<b<.【題目點撥】本題主要考查的就是二次函數(shù)的性質、一次函數(shù)的性質以及函數(shù)的交點問題.在解決第二個問題的時候,我們首先必須要明確給出x的取值范圍是否是在對稱軸的一邊還是兩邊,然后根據(jù)函數(shù)圖形進行求解;對于第三問我們必須能夠根據(jù)題意畫出函數(shù)圖象,然后根據(jù)函數(shù)圖象求出取值范圍.在解決二次函數(shù)的題目時,畫圖是非常關鍵的基本功.23、(1)反比例函數(shù)的解析式為:y=,一次函數(shù)的解析式為:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解題分析】

(1)根據(jù)點A位于反比例函數(shù)的圖象上,利用待定系數(shù)法求出反比例函數(shù)解析式,將點B坐標代入反比例函數(shù)解析式,求出n的值,進而求出一次函數(shù)解析式(2)根據(jù)點A和點B的坐標及圖象特點,即可求出反比例函數(shù)值大于一次函數(shù)值時x的取值范圍(3)由點A和點B的坐標求得三角形以BC為底的高是10,從而求得三角形ABC的面積【題目詳解】解:(1)∵點A(2,3)在y=的圖象上,∴m=6,∴反比例函數(shù)的解析式為:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)兩點在y=kx+b上,∴,解得:,∴一次函數(shù)的解析式為:y=x+1;(2)由圖象可知﹣3<x<0或x>2;(3)以BC為底,則BC邊上的高為3+2=1,∴S△ABC=×2×1=1.24、(1)35,50;(2)①12;②y=﹣x+;③150米.【解題分析】

(1)用總長度÷每天修路的長度可得n的值,繼而可得乙隊單獨完成時間,再用總長度÷乙單獨完成所需時間可得乙隊每天修路的長度m;(2)①根據(jù):甲隊先修建的長度+(甲隊每天修建長度+乙隊每天修建長度)×兩隊合作時間=總長度,列式計算可得;②由①中的相等關系可得y與x之間的函數(shù)關系式;③根據(jù):甲隊先修x米的費用+甲、乙兩隊每天費用×合作時間≤22800,列不等式求解可得.【題目詳解】解:(1)甲隊單獨完成這項工程所需天數(shù)n=1050÷30=35(天),則乙單獨完成所需天數(shù)為21天,∴乙隊每天修路的長度m=1050÷21=50(米),故答案為35,50;(2)①乙隊修路的天數(shù)為=12(天);②由題意,得:x+(30+50)y=1050,∴y與x之間的函數(shù)關系式為:y=﹣x+;③由題意,得:600×+(600+1160)(﹣x+)≤22800,解得:x≥150,答:若總費用不超過22800元,甲隊至少先修了150米.【題目點撥】本題考查了一次函數(shù)的應用,解題的關鍵是熟練的掌握一次函數(shù)的應用.25、(1)(或)(2)足球第一次落地距守門員約13米.(3)他應再向前跑17米.【解題分析】

(1)依題意代入x的值可得拋物線的表達式.(2)令y=0可求出x的兩個值,再按實際情況篩選.(3)本題有多種解法.如圖可得第二次足球彈出后的距離為CD,相當于將拋物線AEMFC向下平移了2個單位可得解得x的值即可知道CD、BD.【題目詳解】解:(1)如圖,設第一次落地時,拋物線的表達式為由已知:當時即表達式為(或)(2)令(舍去).足球第一次落地距守門員約13米.(3)解法一:如圖,第二次足球彈出后的距離為根據(jù)題意:(即相當于將拋物線向下平移了2個單位)解得(米).答:他應再向前跑17米.26、(1)1;(1)≤m<.【解題分析】

(1)在Rt△ABP中利用勾股定理即可解決問題;(1)分兩種情形求出AD的值即可解決問題:①如圖1中,當點P與A重合時,點E在BC的下方,點E到BC的距離為1.②如圖3中,當點P與A重合時,點E在BC的上方,點E到BC的距離為1.【題目詳解】解:(1):(1)如圖1中,設PD=t.則PA=5-t.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論