




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省寧陽第四中學2023-2024學年高二數(shù)學第一學期期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,某鐵路客運部門設計的從甲地到乙地旅客托運行李的費用c(元)與行李質量w(kg)之間的流程圖.已知旅客小李和小張托運行李的質量分別為30kg,60kg,且他們托運的行李各自計費,則這兩人托運行李的費用之和為()A.28元 B.33元C.38元 D.48元2.設函數(shù),則和的值分別為()A.、 B.、C.、 D.、3.已知雙曲線的兩個頂點分別為A、B,點P為雙曲線上除A、B外任意一點,且點P與點A、B連線的斜率為,若,則雙曲線的離心率為()A. B.C.2 D.34.已知正方體中,分別為棱的中點,則直線與所成角的余弦值為()A. B.C. D.5.過兩點和的直線的斜率為()A. B.C. D.6.已知函數(shù)的圖象在點處的切線與直線平行,若數(shù)列的前項和為,則的值為()A. B.C. D.7.一輛汽車做直線運動,位移與時間的關系為,若汽車在時的瞬時速度為12,則()A. B.C.2 D.38.橢圓的左、右焦點分別為,過焦點的傾斜角為直線交橢圓于兩點,弦長,若三角形的內切圓的面積為,則橢圓的離心率為()A. B.C. D.9.已知橢圓C:的左右焦點為F1,F2離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為A. B.C. D.10.已知雙曲線,過點作直線l與雙曲線交于A,B兩點,則能使點P為線段AB中點的直線l的條數(shù)為()A.0 B.1C.2 D.311.直線的一個方向向量為,則它的斜率為()A. B.C. D.12.已知雙曲線:的右焦點為,過的直線(為常數(shù))與雙曲線在第一象限交于點.若(為原點),則的離心率為()A. B.C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數(shù)是___________.14.已知直線與之間的距離為,則__________15.如圖直線過點,且與直線和分別相交于,兩點.(1)求過與交點,且與直線垂直的直線方程;(2)若線段恰被點平分,求直線的方程.16.已知數(shù)列滿足:,,,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點,且.(1)求證:平面;(2)求二面角的正弦值;(3)設為棱上的點(不與,重合),且直線與平面所成角的正弦值為,求的值.18.(12分)已知:(常數(shù));:代數(shù)式有意義(1)若,求使“”為真命題的實數(shù)的取值范圍;(2)若是成立的充分不必要條件,求實數(shù)的取值范圍19.(12分)如圖,四邊形是矩形,平面平面,為中點,,,(1)證明:平面平面;(2)求二面角的余弦值20.(12分)如圖,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E為棱BC上的點,且(1)求證:平面PAC;(2)求二面角A-PC-D的正弦值21.(12分)在等差數(shù)列中,(1)求數(shù)列的通項公式;(2)設,求22.(10分)已知橢圓的一個頂點為,離心率為(1)求橢圓C的方程;(2)若直線l與橢圓C交于M、N兩點,直線BM與直線BN的斜率之積為,證明直線l過定點并求出該定點坐標
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據程序框圖分別計算小李和小張托運行李的費用,再求和得出答案.【詳解】由程序框圖可知,當時,元;當時,元,所以這兩人托運行李的費用之和為元.故選:D2、D【解析】求得,即可求得、的值.【詳解】,則,則,故,.故選:D.3、C【解析】根據題意設設,根據題意得到,進而求得離心率【詳解】根據題意得到設,因為,所以,所以,則故選:C.4、D【解析】以D為原點建立空間直角坐標系,求出E,F,B,D1點的坐標,利用直線夾角的向量求法求解【詳解】如圖,以D為原點建立空間直角坐標系,設正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選D【點睛】本題主要考查了空間向量的應用及向量夾角的坐標運算,屬于基礎題5、D【解析】應用兩點式求直線斜率即可.【詳解】由已知坐標,直線的斜率為.故選:D6、A【解析】函數(shù)的圖象在點處的切線與直線平行,利用導函數(shù)的幾何含義可以求出,轉化求解數(shù)列的通項公式,進而由數(shù)列的通項公式,利用裂項相消法求和即可【詳解】解:∵函數(shù)的圖象在點處的切線與直線平行,由求導得:,由導函數(shù)得幾何含義得:,可得,∴,所以,∴數(shù)列的通項為,所以數(shù)列的前項的和即為,則利用裂項相消法可以得到:所以數(shù)列的前2021項的和為:.故選:A.7、D【解析】首先求出函數(shù)的導函數(shù),依題意可得,即可解得;【詳解】解:因為,所以又汽車在時的瞬時速度為12,即即,解得故選:D【點睛】本題考查導數(shù)在物理中的應用,屬于基礎題.8、C【解析】由題可得直線AB的方程,從而可表示出三角形面積,又利用焦點三角形及三角形內切圓的性質,也可表示出三角形面積,則橢圓的離心率即求.【詳解】由題知直線AB的方程為,即,∴到直線AB距離,又三角形的內切圓的面積為,則半徑為1,由等面積可得,.故選:C.9、A【解析】若△AF1B的周長為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點:橢圓方程及性質10、A【解析】先假設存在這樣的直線,分斜率存在和斜率不存在設出直線的方程,當斜率k存在時,與雙曲線方程聯(lián)立,消去,得到關于的一元二次方程,直線與雙曲線相交于兩個不同點,則,,又根據是線段的中點,則,由此求出與矛盾,故不存在這樣的直線滿足題意;當斜率不存在時,過點的直線不滿足條件,故符合條件的直線不存在.詳解】設過點的直線方程為或,①當斜率存在時有,得(*)當直線與雙曲線相交于兩個不同點,則必有:,即又方程(*)的兩個不同的根是兩交點、的橫坐標,又為線段的中點,,即,,使但使,因此當時,方程①無實數(shù)解故過點與雙曲線交于兩點、且為線段中點的直線不存在②當時,經過點的直線不滿足條件.綜上,符合條件的直線不存在故選:A11、A【解析】根據的方向向量求得斜率.【詳解】且是直線的方向向量,.故選:A12、D【解析】取雙曲線的左焦點,連接,計算可得,即.設,則,,解得:,利用勾股定理計算可得,即可得出結果.【詳解】取雙曲線的左焦點,連接,,則因為,所以,即.,.設,則,,解得:.,,..故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據二項展開式的通項公式,可知展開式中含的項,以及展開式中含的項,再根據組合數(shù)的運算即可求出結果.【詳解】解:由題意可得,展開式中含的項為,而展開式中含的項為,所以的系數(shù)為.故答案為:.14、或##或【解析】利用平行直線間距離公式構造方程求解即可.【詳解】方程可化為:,由平行直線間距離公式得:,解得:或.故答案為:或.15、(1);(2).【解析】本題考查直線方程的基本求法:垂直直線的求法、點關于點對稱、點在直線上的待定系數(shù)法【詳解】(1)由題可得交點,所以所求直線方程為,即;(2)設直線與直線相交于點,因為線段恰被點平分,所以直線與直線的交點的坐標為將點,的坐標分別代入,的方程,得方程組解得由點和點及兩點式,得直線的方程為,即【點睛】直線的考法主要以點的對稱和直線的平行與垂直為主.點關于點的對稱,點關于直線的對稱,直線關于直線的對稱,是重點考察內容16、.【解析】運用累和法,結合等差數(shù)列前項和公式進行求解即可.【詳解】因為,,所以當時,有,因此有:,即,當時,適合上式,所以,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3).【解析】(1)由已知證得,,,以為坐標原點,建立如圖所示的空間直角坐標系,根據向量垂直的坐標表示和線面垂直的判定定理可得證;(2)根據二面角的空間向量求解方法可得答案;(3)設,表示點Q,再利用線面角的空間向量求解方法,建立方程解得,可得答案.【詳解】(1)因為平面,平面,平面,所以,,又因為,則以為坐標原點,建立如圖所示的空間直角坐標系,由已知可得,,,,,,所以,,,因為,,所以,,又,平面,平面,所以平面.(2)由(1)可知平面,可作為平面的法向量,設平面的法向量因為,.所以,即,不妨設,得.,又由圖示知二面角為銳角,所以二面角的正弦值為.(3)設,即,,所以,即,因為直線與平面所成角的正弦值為,所以,即,解得,即.【點睛】本題考查利用空間向量求線面垂直、線面角、二面角的求法,向量法求二面角的步驟:建、設、求、算、?。?、建:建立空間直角坐標系,以三條互相垂直的垂線的交點為原點;2、設:設所需點的坐標,并得出所需向量的坐標;3、求:求出兩個面的法向量;4、算:運用向量的數(shù)量積運算,求兩個法向量的夾角的余弦值;5、取:根據二面角的范圍和圖示得出的二面角是銳角還是鈍角,再取值.18、(1);(2).【解析】(1)若,分別求出,成立的等價條件,利用為真,求實數(shù)的取值范圍;(2)利用是的充分不必要條件,建立不等式關系即可求實數(shù)的取值范圍【詳解】:等價于:即;:代數(shù)式有意義等價于:,即,(1)時,即為,若“”為真命題,則,得:故時,使“”為真命題的實數(shù)的取值范圍是,,(2)記集合,,若是成立的充分不必要條件,則是的真子集,因此:,,故實數(shù)的取值范圍是19、(1)證明見解析;(2)【解析】(1)利用面面垂直的性質,證得平面,進而可得,平面即可得證;(2)在平面ABC內過點A作Ax⊥AB,以A為原點建立空間直角坐標系,借助空間向量而得解.【詳解】(1)因為,為中點,所以,因為是矩形,所以,因為平面平面,平面平面,平面,所以平面,因為平面,所以,又,平面,,所以平面,又平面,所以平面平面;(2)在平面ABC內過點A作Ax⊥AB,由(1)知,平面,故以點A為坐標原點,分別以,,的方向為軸,軸,軸的正方向,建立空間直角坐標系,如圖:則,,,,,則,所以,,,,由(1)知,為平面的一個法向量,設平面的法向量為,則,即,令,則,,所以,所以,因為二面角為銳角,則二面角的余弦值為.【點睛】思路點睛:二面角大小求解時要注意結合實際圖形判斷所求角是銳角還是鈍角20、(1)證明見解析(2)【解析】建立空間直角坐標系,計算出相關點的坐標,進而計算出相關向量的坐標;(1)計算向量的數(shù)量積,,根據數(shù)量積結果為零,證明線線垂直,進而證明線面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根據向量的夾角公式即可求解.【小問1詳解】證明:因為平面ABCD,平面ABCD,平面ABCD,所以,,又因為,則以A為坐標原點,分別以AB、AD、AP所在的直線為x、y、z軸建立空間直角坐標系,則,,,,,,,,,則,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小問2詳解】解:由(1)可知平面PAC,可作為平面PAC的法向量,設平面PCD的法向量,因為,所以,即,不妨設,得,又由圖示知二面角為銳角,所以二面角的正弦值為21、(1)(2)【解析】(1)直接利用等差數(shù)列的通項公式即可求解;(2)先判斷出數(shù)列單調性,由時,,時,;然后去掉絕對值,利用等差數(shù)列的前項和公式求解即可.【小問1詳解】是等差數(shù)列,公差;即;【小問2詳解】,則由(1)可知前五項為正,第六項開始為負.22、(1);(2)答案見解析,直線過定點.【解析】(1)首先根據頂點為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合同變更備注說明
- 保教常規(guī)培訓
- 商品質量糾紛處理協(xié)議(2篇)
- 保潔倉庫管理制度
- 2025年統(tǒng)編版小學道德與法治四年級下冊《我們的衣食之源》說課課件
- 2025年統(tǒng)編版小學道德與法治二年級下冊《我們有新玩法》說課課件
- 會議視頻制作服務合同
- 施工現(xiàn)場材料耗損責任協(xié)議
- 德育主題教育
- 剖宮產疤痕憩室護理查房
- 馬工程版《中國經濟史》各章思考題答題要點及詳解
- 統(tǒng)編版語文四年級下冊第四單元教材解讀解讀與集體備課課件
- SWITCH 勇者斗惡龍11S 金手指 版本:v1.0.3 最大金幣 最大迷你獎章 32倍經驗 最大攻擊 所有材料
- 臺灣大學歐麗娟老師的中國文學史講義
- 存貨盤點安排通知盤點工作計劃書物資盤點計劃方案
- 客服電話服務標準
- 藥店保健食品管理制度
- R老年人老年人如何保持適宜體重
- 黑龍江省鐵礦分布情況
- 光伏組件技術規(guī)范書
- 文件盒側面標簽模板
評論
0/150
提交評論