版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省山東師大附中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末考試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,奧運(yùn)五環(huán)由5個(gè)奧林匹克環(huán)套接組成,環(huán)從左到右互相套接,上面是藍(lán)、黑、紅環(huán),下面是黃,綠環(huán),整個(gè)造形為一個(gè)底部小的規(guī)則梯形.為迎接北京冬奧會(huì)召開,某機(jī)構(gòu)定制一批奧運(yùn)五環(huán)旗,已知該五環(huán)旗的5個(gè)奧林匹克環(huán)的內(nèi)圈半徑為1,外圈半徑為1.2,相鄰圓環(huán)圓心水平距離為2.6,兩排圓環(huán)圓心垂直距離為1.1,則相鄰兩個(gè)相交的圓的圓心之間的距離為()A. B.2.8C. D.2.92.下列命題中是真命題的是()A.“”是“”的充分非必要條件B.“”是“”的必要非充分條件C.在中“”是“”的充分非必要條件D.“”是“”的充要條件3.已知等差數(shù)列,且,則()A.3 B.5C.7 D.94.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點(diǎn),,則異面直線PC與BE所成角的余弦值為()A. B.C. D.5.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)為()A. B.C. D.6.下列說法錯(cuò)誤的是()A.“若,則”的逆否命題是“若,則”B.“”的否定是”C.“是"”的必要不充分條件D.“或是"”的充要條件7.等差數(shù)列的公差,且,,則的通項(xiàng)公式是()A. B.C. D.8.已知等差數(shù)列共有項(xiàng),其中奇數(shù)項(xiàng)之和為290,偶數(shù)項(xiàng)之和為261,則的值為()A.30 B.29C.28 D.279.函數(shù)的導(dǎo)函數(shù)為,若已知圖象如圖,則下列說法正確的是()A.存在極大值點(diǎn) B.在單調(diào)遞增C.一定有最小值 D.不等式一定有解10.已知數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,數(shù)列滿足.若對任意的,都有成立,則實(shí)數(shù)的取值范圍是()A., B.C., D.11.雙曲線x21的漸近線方程是()A.y=±x B.y=±xC.y=± D.y=±2x12.對于兩個(gè)平面、,“內(nèi)有三個(gè)點(diǎn)到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量均為非零向量,且滿足,記向量在向量上投影向量為,則k=______.(用數(shù)字作答)14.已知橢圓,A,B是橢圓C上的兩個(gè)不同的點(diǎn),設(shè),若,則直線AB的方程為______15.已知,,若,則______16.的展開式中的常數(shù)項(xiàng)為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)一個(gè)長方體的平面展開圖及該長方體的直觀圖的示意圖如圖所示(1)請將字母F,G,H標(biāo)記在長方體相應(yīng)的頂點(diǎn)處(不需說明理由):(2)若且有下面兩個(gè)條件:①;②,請選擇其中一個(gè)條件,使得DF⊥平面,并證明你的結(jié)論18.(12分)如圖,已知拋物線的焦點(diǎn)為F,拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1(1)求拋物線C的方程;(2)過點(diǎn)F作互相垂直的兩條直線l1,l2,l1與拋物線C交于A,B兩點(diǎn),l2與拋物線C交于C,D兩點(diǎn),M,N分別為弦AB,CD的中點(diǎn),求|MF|·|NF|的最小值19.(12分)如圖,在四棱錐中,,為的中點(diǎn),連接.(1)求證:平面;(2)求平面與平面的夾角的余弦值.20.(12分)已知橢圓:經(jīng)過點(diǎn)為,且.(1)求橢圓的方程;(2)若直線與橢圓相切于點(diǎn),與直線相交于點(diǎn).已知點(diǎn),且,求此時(shí)的值.21.(12分)在①,②,③,三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問題中,并解答.設(shè)數(shù)列是公比大于0的等比數(shù)列,其前項(xiàng)和為,數(shù)列是等差數(shù)列,其前項(xiàng)和為.已知,,,_____________.(1)請寫出你選擇條件的序號____________;并求數(shù)列和的通項(xiàng)公式;(2)求和.22.(10分)中,角A,B,C所對的邊分別為.已知.(1)求的值;(2)求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)題意作出輔助線直接求解即可.【詳解】如圖所示,由題意可知,在中,取的中點(diǎn),連接,所以,,又因?yàn)椋?,所以即相鄰兩個(gè)相交的圓的圓心之間的距離為.故選:C2、B【解析】根據(jù)充分條件、必要條件、充要條件的定義依次判斷.【詳解】當(dāng)時(shí),,非充分,故A錯(cuò).當(dāng)不能推出,所以非充分,,所以是必要條件,故B正確.當(dāng)在中,,反之,故為充要條件,故C錯(cuò);當(dāng)時(shí),,,,充分條件,因?yàn)椋?dāng)時(shí)成立,非必要條件,故D錯(cuò).故選:B.3、B【解析】根據(jù)等差數(shù)列的性質(zhì)求得正確答案.【詳解】由于數(shù)列是等差數(shù)列,所以.故選:B4、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點(diǎn)F,G,連接DF,F(xiàn)G,DG,如圖,因?yàn)镋為AD的中點(diǎn),四邊形ABCD是菱形,所以,所以(其補(bǔ)角)是異面直線PC與BE所成的角因?yàn)榈酌鍭BCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B5、B【解析】結(jié)合已知條件,利用對稱的概念即可求解.【詳解】不妨設(shè)點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)為,則線段垂直于軸且的中點(diǎn)在軸,從而點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)為.故選:B.6、C【解析】利用逆否命題、命題的否定、充分必要性的概念逐一判斷即可.【詳解】對于A,“若,則”的逆否命題是“若,則”,正確;對于B,“”的否定是”,正確;對于C,“”等價(jià)于“或,∴“是"”的充分不必要條件,錯(cuò)誤;對于D,“或是"”的充要條件,正確.故選:C7、C【解析】由于數(shù)列為等差數(shù)列,所以,再由可得可以看成一元二次方程的兩個(gè)根,由可知,所以,從而可求出,可得到通項(xiàng)公式.【詳解】解:因?yàn)閿?shù)列為等差數(shù)列,所以,因?yàn)?,所以可以看成一元二次方程的兩個(gè)根,因?yàn)?,所以,所以,解得,所以故選:C【點(diǎn)睛】此題考查的是等差數(shù)列的通項(xiàng)公式和性質(zhì),屬于基礎(chǔ)題.8、B【解析】由等差數(shù)列的求和公式與等差數(shù)列的性質(zhì)求解即可【詳解】奇數(shù)項(xiàng)共有項(xiàng),其和為,∴偶數(shù)項(xiàng)共有n項(xiàng),其和為,∴故選:B9、C【解析】根據(jù)圖象可得的符號,從而可得的單調(diào)區(qū)間,再對選項(xiàng)進(jìn)行逐一分析判斷正誤得出答案.【詳解】由所給的圖象,可得當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,可得在遞減,遞增;在遞減,在遞增,B錯(cuò)誤,且知,所以存在極小值和,無極大值,A錯(cuò)誤,同時(shí)無論是否存在,可得出一定有最小值,但是最小值不一定為負(fù)數(shù),故C正確,D錯(cuò)誤.故選:C.10、D【解析】由等差數(shù)列通項(xiàng)公式得,再結(jié)合題意得數(shù)列單調(diào)遞增,且滿足,,即,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,所以,由于數(shù)列滿足,所以對任意的都成立,故數(shù)列單調(diào)遞增,且滿足,,所以,解得故選:11、D【解析】根據(jù)雙曲線漸近線定義即可求解.【詳解】雙曲線的方程為,雙曲線的漸近線方程為,故選:D【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.12、B【解析】根據(jù)平面的性質(zhì)分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有三個(gè)點(diǎn)到的距離相等,當(dāng)這三個(gè)點(diǎn)不在一條直線上時(shí),可得;當(dāng)這三個(gè)點(diǎn)在一條直線上時(shí),則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個(gè)點(diǎn)到的距離相等,故必要性成立,所以“內(nèi)有三個(gè)點(diǎn)到的距離相等”是“”的必要不充分條件.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##1.5【解析】由兩邊平方可得,,,設(shè),向量是以向量為鄰邊的平行四邊形、有共同起點(diǎn)的對角線,,由余弦定理可得,向量在向量上投影向量為,化簡可得答案.【詳解】因?yàn)?,所以,,兩邊平方整理得,,兩邊平方整理得,即,可得,,設(shè),所以向量是以向量為鄰邊的平行四邊形、有共同起點(diǎn)的對角線,如圖,即,因?yàn)椋?,平行四邊形即為的菱形,所以,由余弦定理可得,可得,,向量在向量上投影向量為,?故答案為:.14、【解析】由已知可得為的中點(diǎn),再由點(diǎn)差法求所在直線的斜率,即可求得直線的方程【詳解】由,可得為的中點(diǎn),且在橢圓內(nèi),設(shè),,,,則,,,則,即所在直線的斜率為直線的方程為,即故答案為:15、【解析】根據(jù)空間向量垂直得到等量關(guān)系,求出答案.【詳解】由題意得:,解得:故答案為:16、15【解析】先求出二項(xiàng)式展開式的通項(xiàng)公式,然后令的次數(shù)為0,求出的值,從而可得展開式中的常數(shù)項(xiàng)【詳解】二項(xiàng)式展開式的通項(xiàng)公式為,令,得,所以展開式中的常數(shù)項(xiàng)為故答案為:15三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)答案見解析【解析】(1)由展開圖及直觀圖直接觀察可得;(2)選擇②,根據(jù)線面垂直的判定定理即可證明DF⊥平面.【小問1詳解】如圖,【小問2詳解】若選擇①,若此時(shí)有平面,則由平面可得,而平面,而平面,故,因?yàn)?,則平面,由平面可得,故此時(shí)矩形為正方形,,矛盾.選擇條件②,使得平面,下面證明如圖,連接,在長方體中,平面,而平面,故,而,故矩形為正方形,故,而,故平面,而平面,故,同理,又,所以平面.18、(1)(2)8【解析】(1)由拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,即可求得拋物線的方程;(2)設(shè)直線AB的斜率為k,則直線CD的斜率為,得到直線AB的方程為,聯(lián)立方程,求得,進(jìn)而求得的坐標(biāo),得到的表達(dá)式,結(jié)合基本不等式,即可求解.【小問1詳解】解:因?yàn)閽佄锞€C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,解得,所以拋物線C的方程為【小問2詳解】解:由(1)可知焦點(diǎn)為F(1,0),由已知可得ABCD,所以直線AB,CD的斜率都存在且均不為0,設(shè)直線AB斜率為k,則直線CD的斜率為,所以直線AB的方程為,聯(lián)立方程,消去x得,設(shè)點(diǎn)A(x1,y1),B(x2,y2),則,因?yàn)镸(xM,yM)為弦AB的中點(diǎn),所以,由,得,所以點(diǎn),同理可得,所以,=,所以,當(dāng)且僅當(dāng),即時(shí),等號成立,所以的最小值為19、(1)證明過程見解析;(2).【解析】(1)根據(jù)平行四邊形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理進(jìn)行證明即可;(2)利用空間向量夾角公式進(jìn)行求解即可.【小問1詳解】因?yàn)闉榈闹悬c(diǎn),所以,而,所以四邊形是平行四邊形,因此,因?yàn)椋?,為的中點(diǎn),所以,,而,因?yàn)椋?,而平面,所以平面;【小?詳解】根據(jù)(1),建立如圖所示的空間直角坐標(biāo)系,,于是有:,則平面的法向量為:,設(shè)平面的法向量為:,所以,設(shè)平面與平面的夾角為,所以.20、(1);(2).【解析】(1)根據(jù)橢圓離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)直線與橢圓的位置關(guān)系求出點(diǎn)的坐標(biāo),結(jié)合平面向量垂直的性質(zhì)進(jìn)行求解即可.【詳解】(1)由已知得,,而,解得,橢圓的方程為;(2)設(shè)直線方程為代入得,化簡得由,得,,設(shè),則,,則設(shè),則,則,所以在軸存在使.,,所以在.21、(1)選①,,;選②,,;選③,,;(2),【解析】(1)選條件①根據(jù)等比數(shù)列列出方程求出公比得通項(xiàng)公式,再由等差數(shù)列列出方程求出首項(xiàng)與公差可得通項(xiàng)公式,選②③與①相同的方法求數(shù)列的通項(xiàng)公式;(2)根據(jù)等比數(shù)列、等差數(shù)列的求和公式解計(jì)算即可.【小問1詳解】選條件①:設(shè)等比數(shù)列的公比為q,,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 繆含2025年度離婚協(xié)議書及房產(chǎn)分割細(xì)則4篇
- 全新2025年度教育信息化建設(shè)合同
- 2025版信托投資公司外匯資產(chǎn)托管服務(wù)合同3篇
- 二零二五年度中美教育機(jī)構(gòu)合作項(xiàng)目風(fēng)險(xiǎn)評估與管理合同3篇
- 二零二五版美縫施工與環(huán)保驗(yàn)收合同4篇
- 水庫工程質(zhì)量檢測與監(jiān)控2025年度承包合同2篇
- 2025新生入學(xué)法律協(xié)議書(教育保障與未來規(guī)劃)3篇
- 二零二五年度定制門窗品牌代理銷售合同規(guī)范4篇
- 2025版農(nóng)田挖掘機(jī)操作工勞動(dòng)合同模板6篇
- 個(gè)人出租車承包合同(2024版)
- 2024年高純氮化鋁粉體項(xiàng)目可行性分析報(bào)告
- 安檢人員培訓(xùn)
- 危險(xiǎn)性較大分部分項(xiàng)工程及施工現(xiàn)場易發(fā)生重大事故的部位、環(huán)節(jié)的預(yù)防監(jiān)控措施
- 《榜樣9》觀后感心得體會(huì)四
- 2023事業(yè)單位筆試《公共基礎(chǔ)知識》備考題庫(含答案)
- 化學(xué)-廣東省廣州市2024-2025學(xué)年高一上學(xué)期期末檢測卷(一)試題和答案
- 2025四川中煙招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- EHS工程師招聘筆試題與參考答案(某大型央企)2024年
- 營銷策劃 -麗亭酒店品牌年度傳播規(guī)劃方案
- 2025年中國蛋糕行業(yè)市場規(guī)模及發(fā)展前景研究報(bào)告(智研咨詢發(fā)布)
- 護(hù)理組長年底述職報(bào)告
評論
0/150
提交評論