人教A版高中數(shù)學(xué)(必修第一冊)同步講義第16講 3.1.2函數(shù)的表示法(含解析)_第1頁
人教A版高中數(shù)學(xué)(必修第一冊)同步講義第16講 3.1.2函數(shù)的表示法(含解析)_第2頁
人教A版高中數(shù)學(xué)(必修第一冊)同步講義第16講 3.1.2函數(shù)的表示法(含解析)_第3頁
人教A版高中數(shù)學(xué)(必修第一冊)同步講義第16講 3.1.2函數(shù)的表示法(含解析)_第4頁
人教A版高中數(shù)學(xué)(必修第一冊)同步講義第16講 3.1.2函數(shù)的表示法(含解析)_第5頁
已閱讀5頁,還剩56頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第02講3.1.2函數(shù)的表示法課程標準學(xué)習(xí)目標①了解函數(shù)的三種表示方法及特點;②掌握求函數(shù)解析式的常用方法③了解與認識分段函數(shù)及其定義域④會用分析法與圖象法表示分段函數(shù),并能掌握分段函數(shù)的相關(guān)性質(zhì).通過本節(jié)課的學(xué)習(xí),熟練掌握函數(shù)的三種表示方法,會求函數(shù)的解析式,掌握分段函數(shù)的解析法與圖象法的表示方法與性質(zhì).知識點01:函數(shù)的表示法1、解析法:用數(shù)學(xué)表達式表示兩個變量之間的對應(yīng)關(guān)系.2、列表法:列出表格來表示兩個變量之間的對應(yīng)關(guān)系.3、圖象法:用圖象表示兩個變量之間的對應(yīng)關(guān)系.優(yōu)點缺點聯(lián)系解析法①簡明、全面的概括了變量之間的關(guān)系;②可以通過解析式求出在定義域內(nèi)任意自變量所對應(yīng)的函數(shù)值;③便于利用解析式研究函數(shù)的性質(zhì);①并不是所有的函數(shù)都有解析式;②不能直觀地觀察到函數(shù)的變化規(guī)律;解析法、圖象法、列表法各有各的優(yōu)缺點,面對實際情境時,我們要根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù).圖象法①能直觀、形象地表示自變量的變化情況及相適應(yīng)的函數(shù)值的變化趨勢;②可以直接應(yīng)用圖象來研究函數(shù)的性質(zhì);①并不是所有的函數(shù)都能畫出圖象;②不能精確地求出某一自變量相應(yīng)的函數(shù)值;列表法①不需要計算就可以直接看出與自變量的值對應(yīng)的函數(shù)值;①不夠全面,只能表示自變量取較少的有限值的對應(yīng)關(guān)系;②不能明顯地展示出因變量隨自變量變化的規(guī)律;知識點02:求函數(shù)解析式1、待定系數(shù)法:若已知函數(shù)的類型(如一次函數(shù)、二次函數(shù),反比例等),可用待定系數(shù)法.2、換元法:主要用于解決已知SKIPIF1<0這類復(fù)合函數(shù)的解析式,求函數(shù)SKIPIF1<0的解析式的問題,在使用換元法時特別注意,換元必換范圍.3、配湊法:由已知條件SKIPIF1<0,可將SKIPIF1<0改寫成關(guān)于SKIPIF1<0的表達式,4、方程組(消去)法:主要解決已知SKIPIF1<0與SKIPIF1<0、SKIPIF1<0、SKIPIF1<0……的方程,求SKIPIF1<0解析式?!炯磳W(xué)即練1】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,則函數(shù)SKIPIF1<0_______,SKIPIF1<0=_______.【答案】SKIPIF1<011【詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.知識點03:分段函數(shù)對于函數(shù)SKIPIF1<0,若自變量在定義域內(nèi)的在不同范圍取值時,函數(shù)的對應(yīng)關(guān)系也不相同,則稱函數(shù)SKIPIF1<0叫分段函數(shù).注:(1)分段函數(shù)是一個函數(shù),只是自變量在不同范圍取值時,函數(shù)的對應(yīng)關(guān)系不相同;(2)在書寫時要指明各段函數(shù)自變量的取值范圍;(3)分段函數(shù)的定義域是所以自變量取值區(qū)間的并集.【即學(xué)即練2】(2023·四川內(nèi)江·四川省內(nèi)江市第六中學(xué)??寄M預(yù)測)已知函數(shù)SKIPIF1<0,則SKIPIF1<0_________.【答案】SKIPIF1<0【詳解】SKIPIF1<0,所以SKIPIF1<0故答案為:SKIPIF1<0.知識點04:函數(shù)的圖象1、函數(shù)圖象的平移變換(左“+”右“-”;上“+”下“-”)①SKIPIF1<0②SKIPIF1<0③SKIPIF1<0④SKIPIF1<0注:左右平移只能單獨一個SKIPIF1<0加或者減,注意當(dāng)SKIPIF1<0前系數(shù)不為1,需將系數(shù)提取到外面.2、函數(shù)圖象的對稱變換①SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象;②SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象;③SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象;3、函數(shù)圖象的翻折變換(絕對值變換)①SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象;(口訣;以SKIPIF1<0軸為界,保留SKIPIF1<0軸上方的圖象;將SKIPIF1<0軸下方的圖象翻折到SKIPIF1<0軸上方)②SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象.(口訣;以SKIPIF1<0軸為界,去掉SKIPIF1<0軸左側(cè)的圖象,保留SKIPIF1<0軸右側(cè)的圖象;將SKIPIF1<0軸右側(cè)圖象翻折到SKIPIF1<0軸左側(cè);本質(zhì)是個偶函數(shù))【即學(xué)即練3】(2023春·四川雅安·高一雅安中學(xué)??奸_學(xué)考試)函數(shù)SKIPIF1<0的部分圖象大致是(

)A. B.C. D.【答案】A【詳解】解:因為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,故符合題意的只有A.故選:A題型01函數(shù)的三種表示法的應(yīng)用【典例1】(2023·安徽黃山·高一屯溪一中??奸_學(xué)考試)已知邊長為1的正方形SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點,動點SKIPIF1<0在正方形SKIPIF1<0邊上沿SKIPIF1<0運動.設(shè)點SKIPIF1<0經(jīng)過的路程為SKIPIF1<0.SKIPIF1<0的面積為SKIPIF1<0.則SKIPIF1<0與SKIPIF1<0的函數(shù)圖象大致為圖中的()A.

B.

C.

D.

【答案】A【詳解】當(dāng)動點P在正方形ABCD邊上沿SKIPIF1<0運動時,則SKIPIF1<0的面積為SKIPIF1<0;當(dāng)動點P在正方形ABCD邊上沿SKIPIF1<0運動時,則SKIPIF1<0的面積為SKIPIF1<0;當(dāng)動點P在正方形ABCD邊上沿SKIPIF1<0運動時,則SKIPIF1<0的面積為SKIPIF1<0;綜上所述:SKIPIF1<0,可知B、C、D錯誤,A正確.故選:A.【典例2】(2023·全國·高三對口高考)如圖中的圖象所表示的函數(shù)的解析式為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【詳解】當(dāng)0≤x≤1時,設(shè)f(x)=kx,由圖象過點(1,SKIPIF1<0),得k=SKIPIF1<0,所以此時f(x)=SKIPIF1<0x;當(dāng)1≤x≤2時,設(shè)f(x)=mx+n,由圖象過點(1,SKIPIF1<0),(2,0),得SKIPIF1<0,解得SKIPIF1<0所以此時f(x)=SKIPIF1<0.函數(shù)表達式可轉(zhuǎn)化為:y=SKIPIF1<0SKIPIF1<0|x-1|(0≤x≤2)故答案為B【典例3】(2023秋·廣東·高一校聯(lián)考期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0分別由下表給出,SKIPIF1<0012SKIPIF1<0121SKIPIF1<0012SKIPIF1<0210則SKIPIF1<0_____________;滿足SKIPIF1<0的SKIPIF1<0的值是_____________.【答案】21【詳解】依題意,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因此當(dāng)且僅當(dāng)SKIPIF1<0時,SKIPIF1<0成立,所以滿足SKIPIF1<0的x的值是1.故答案為:2;1【變式1】(2023春·寧夏銀川·高三銀川一中??茧A段練習(xí))如圖,SKIPIF1<0是邊長為2的等邊三角形,點SKIPIF1<0由點SKIPIF1<0沿線段SKIPIF1<0向點SKIPIF1<0移動,過點SKIPIF1<0作SKIPIF1<0的垂線SKIPIF1<0,設(shè)SKIPIF1<0,記位于直線SKIPIF1<0左側(cè)的圖形的面積為SKIPIF1<0,那么SKIPIF1<0與SKIPIF1<0的函數(shù)關(guān)系的圖象大致是(

)A. B.C. D.【答案】D【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,顯然此時函數(shù)的圖象是拋物線的一部分;當(dāng)SKIPIF1<0時,SKIPIF1<0,顯然此時函數(shù)的圖象是拋物線的一部分,綜上所述:SKIPIF1<0與SKIPIF1<0的函數(shù)關(guān)系的圖象大致是選項D,故選:D【變式2】(2023·全國·高三專題練習(xí))某校要召開學(xué)生代表大會,規(guī)定各班每SKIPIF1<0人推選一名代表,當(dāng)班人數(shù)除以SKIPIF1<0的余數(shù)大于SKIPIF1<0時,再增選一名代表,則各班推選代表人數(shù)SKIPIF1<0與該班人數(shù)SKIPIF1<0之間的函數(shù)關(guān)系用取整函數(shù)SKIPIF1<0(SKIPIF1<0表示不大于SKIPIF1<0的最大整數(shù),如SKIPIF1<0,SKIPIF1<0)可表示為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】設(shè)班級人數(shù)的個位數(shù)字為SKIPIF1<0,令SKIPIF1<0,(SKIPIF1<0),當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,綜上,函數(shù)關(guān)系式為SKIPIF1<0.故選:B.題型02求函數(shù)的解析式(待定系數(shù)法)【典例1】(多選)(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0是一次函數(shù),滿足SKIPIF1<0,則SKIPIF1<0的解析式可能為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【詳解】設(shè)SKIPIF1<0,由題意可知SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.故選:AD.【典例2】(2023·全國·高三對口高考)若二次函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的表達式為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0又∵SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:D.【變式1】(2023·全國·高三專題練習(xí))若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0設(shè)SKIPIF1<0即SKIPIF1<0則SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0故選:SKIPIF1<0.題型03求函數(shù)的解析式(換元法)【典例1】(2023春·寧夏銀川·高二銀川一中??计谥校┮阎猄KIPIF1<0,則函數(shù)SKIPIF1<0的解析式為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,故選:C【典例2】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,求SKIPIF1<0.【答案】SKIPIF1<0,SKIPIF1<0【詳解】因為SKIPIF1<0,令SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,當(dāng)SKIPIF1<0時SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,所以SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.題型04求函數(shù)的解析式(配湊法)【典例1】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0_______.【答案】SKIPIF1<0【詳解】因為SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<0【典例2】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0(

)A.6 B.3 C.11 D.10【答案】C【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:C.題型05求函數(shù)的解析式(方程組(消去)法)【典例1】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,對任意SKIPIF1<0均滿足:SKIPIF1<0則函數(shù)SKIPIF1<0解析式為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由SKIPIF1<0,可得SKIPIF1<0①,又SKIPIF1<0②,①+②得:SKIPIF1<0,解得SKIPIF1<0,故選:A.【典例2】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,求SKIPIF1<0的解析式【答案】SKIPIF1<0【詳解】因為SKIPIF1<0,用SKIPIF1<0替換SKIPIF1<0得SKIPIF1<0,消去SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.【變式1】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)設(shè)函數(shù)SKIPIF1<0,若對任意SKIPIF1<0,SKIPIF1<0恒成立,求實數(shù)m的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由SKIPIF1<0,得SKIPIF1<0,消去SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0.(2)由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0對任意SKIPIF1<0恒成立,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值86,所以實數(shù)m的取值范圍為SKIPIF1<0.題型06求函數(shù)的解析式(賦值法求抽象函數(shù)的解析式)【典例1】(2023·全國·高三專題練習(xí))定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,并且對任意實數(shù)SKIPIF1<0,SKIPIF1<0都有SKIPIF1<0,求SKIPIF1<0的解析式.【答案】SKIPIF1<0【詳解】對任意實數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.【典例2】(2023·高一課時練習(xí))已知函數(shù)SKIPIF1<0滿足:對一切實數(shù)SKIPIF1<0、SKIPIF1<0,均有SKIPIF1<0成立,且SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的表達式;【答案】(1)SKIPIF1<0【詳解】(1)由已知等式SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0.再令SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0.因此,函數(shù)SKIPIF1<0的表達式為SKIPIF1<0.【變式1】(2023·廣東深圳·高三深圳外國語學(xué)校??茧A段練習(xí))寫出一個滿足:SKIPIF1<0的函數(shù)解析式為______.【答案】SKIPIF1<0【詳解】SKIPIF1<0中,令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0,不妨設(shè)SKIPIF1<0,滿足要求.故答案為:SKIPIF1<0【變式2】(2023·高一課時練習(xí))已知函數(shù)SKIPIF1<0對一切的實數(shù)SKIPIF1<0,SKIPIF1<0,都滿足SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求SKIPIF1<0的解析式;(3)求SKIPIF1<0在SKIPIF1<0上的值域.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【詳解】(1)令SKIPIF1<0則SKIPIF1<0SKIPIF1<0(2)令SKIPIF1<0則SKIPIF1<0;(3)SKIPIF1<0對稱軸為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.題型07分段函數(shù)(求分段函數(shù)的值)【典例1】(2023春·河南信陽·高一校聯(lián)考期中)已知函數(shù)SKIPIF1<0,則SKIPIF1<0______.【答案】63【詳解】因為SKIPIF1<0,所以SKIPIF1<0.故答案為:63.【典例2】(2023·全國·高三對口高考)已知函數(shù)SKIPIF1<0,則SKIPIF1<0的值為______.【答案】7【詳解】由題意,函數(shù)SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0.題型08分段函數(shù)(已知分段函數(shù)的值求參數(shù))【典例1】(2023·河北唐山·開灤第二中學(xué)??寄M預(yù)測)已知函數(shù)SKIPIF1<0,若SKIPIF1<0的最小值為1,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由SKIPIF1<0,則SKIPIF1<0,僅當(dāng)SKIPIF1<0時等號成立,所以SKIPIF1<0,在SKIPIF1<0上遞減,且最小值為SKIPIF1<0,對于SKIPIF1<0在SKIPIF1<0上,當(dāng)SKIPIF1<0時SKIPIF1<0;當(dāng)SKIPIF1<0時SKIPIF1<0,無最小值;顯然,SKIPIF1<0時SKIPIF1<0的最小值不為1,不合題意;所以SKIPIF1<0,此時必有SKIPIF1<0,可得SKIPIF1<0.故選:B【典例2】(2023春·北京海淀·高三首都師范大學(xué)附屬中學(xué)??奸_學(xué)考試)已知函數(shù)SKIPIF1<0無最大值,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】解:由題可知,當(dāng)SKIPIF1<0時,SKIPIF1<0,其對稱軸為SKIPIF1<0,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0有最大值為SKIPIF1<0,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0有最大值為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,在SKIPIF1<0單調(diào)遞減,故SKIPIF1<0,因為函數(shù)SKIPIF1<0無最大值,故當(dāng)SKIPIF1<0時,需滿足SKIPIF1<0,解得SKIPIF1<0,不符合題意,當(dāng)SKIPIF1<0時,需滿足SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(舍去).綜上,實數(shù)a的取值范圍是SKIPIF1<0.故選:D.【典例3】(2023春·上海閔行·高三上海市七寶中學(xué)??奸_學(xué)考試)已知函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的最大值是________.【答案】SKIPIF1<0/SKIPIF1<0【詳解】令SKIPIF1<0,解得:SKIPIF1<0;令SKIPIF1<0,解得:SKIPIF1<0;SKIPIF1<0圖象如下圖所示,由圖象可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.題型09分段函數(shù)(分段函數(shù)的值域或最值)【典例1】(2023春·北京大興·高二??茧A段練習(xí))函數(shù)SKIPIF1<0的最小值是__________.【答案】SKIPIF1<0【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0的單調(diào)遞減,SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0【典例2】(2023秋·內(nèi)蒙古通遼·高一校聯(lián)考期末)已知函數(shù)SKIPIF1<0SKIPIF1<0的最大值為SKIPIF1<0SKIPIF1<0的最小值為SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,所以此時SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以此時SKIPIF1<0,綜上所述,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(多選)(2023秋·高一課時練習(xí))設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0存在最小值時,實數(shù)SKIPIF1<0的值可能是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.1【答案】ABC【詳解】解:因為SKIPIF1<0,若SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時SKIPIF1<0,此時函數(shù)不存在最小值;若SKIPIF1<0,則SKIPIF1<0,此時SKIPIF1<0,符合題意;若SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時SKIPIF1<0,二次函數(shù)SKIPIF1<0對稱軸為SKIPIF1<0,開口向上,此時SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,要使函數(shù)SKIPIF1<0存在最小值,只需SKIPIF1<0,解得SKIPIF1<0,綜上可得SKIPIF1<0.故選:ABC題型10分段函數(shù)(解分段不等式)【典例1】(2023·全國·高三專題練習(xí))設(shè)SKIPIF1<0,則不等式SKIPIF1<0的解集是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【詳解】當(dāng)SKIPIF1<0時,由SKIPIF1<0得:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時,由SKIPIF1<0得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0;SKIPIF1<0不等式SKIPIF1<0的解集是SKIPIF1<0.故選:A.【典例2】(2023·全國·高一專題練習(xí))函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集___________.【答案】SKIPIF1<0【詳解】由題意得原不等式等價于SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為:SKIPIF1<0故答案為:SKIPIF1<0【變式1】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,則使SKIPIF1<0成立的SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】(方法1)當(dāng)SKIPIF1<0時SKIPIF1<0,不等式SKIPIF1<0可化為SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,不等式SKIPIF1<0可化為SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.綜上,使不等式SKIPIF1<0成立的SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.(方法2)函數(shù)SKIPIF1<0的圖象如圖所示,虛線表示SKIPIF1<0,函數(shù)SKIPIF1<0圖象在虛線SKIPIF1<0及以上的部分中SKIPIF1<0的取值范圍即不等式SKIPIF1<0的解集.由圖可知,SKIPIF1<0的取值范圍就是點的橫坐標與點SKIPIF1<0的橫坐標之間的范圍.在SKIPIF1<0中,令SKIPIF1<0,得SKIPIF1<0,所以點SKIPIF1<0的橫坐標為SKIPIF1<0.在SKIPIF1<0中,令SKIPIF1<0,得SKIPIF1<0(舍去)或SKIPIF1<0,所以點SKIPIF1<0的橫坐標為SKIPIF1<0,所以使不等式SKIPIF1<0成立的SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.【變式2】(2023·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的最小值;(2)若SKIPIF1<0對任意SKIPIF1<0恒成立,求k的取值范圍.【答案】(1)0(2)SKIPIF1<0【詳解】(1)在同一平面直角坐標系中,畫出函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象,如圖1所示,由SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;由SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.由圖象易得SKIPIF1<0,結(jié)合圖象可知,當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值,即SKIPIF1<0.(2)設(shè)SKIPIF1<0,則SKIPIF1<0恒過點SKIPIF1<0,因為SKIPIF1<0,所以記SKIPIF1<0,由(1)知,SKIPIF1<0的圖象如圖2所示,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,不等式恒成立.當(dāng)SKIPIF1<0時,易知直線AM的斜率SKIPIF1<0,由圖象可知,根據(jù)SKIPIF1<0恒成立,可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,綜上所述,k的取值范圍是SKIPIF1<0.題型11函數(shù)圖象(函數(shù)圖象識別)【典例1】(2023春·上海楊浦·高二上海市控江中學(xué)校考階段練習(xí))設(shè)SKIPIF1<0均為非零實數(shù),則直線SKIPIF1<0和SKIPIF1<0在同一坐標系下的圖形可能是(

).A. B.C. D.【答案】A【詳解】對于A,若SKIPIF1<0圖象正確,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0開口方向向上,對稱軸為SKIPIF1<0,與圖象符合,A正確;對于B,若SKIPIF1<0圖象正確,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0開口方向向下,與圖象不符,B錯誤;對于C,若SKIPIF1<0圖象正確,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0開口方向向上,與圖象不符,C錯誤;對于D,若SKIPIF1<0圖象正確,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0開口方向向上,與圖象不符,D錯誤.故選:A.【典例2】(2023秋·江蘇常州·高一統(tǒng)考期末)函數(shù)SKIPIF1<0的圖象大致形狀是(

)A. B.C. D.【答案】A【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0SKIPIF1<0,排除BC選項,SKIPIF1<0,排除D選項.故選:A【變式1】(2023春·四川綿陽·高一三臺中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的圖像是(

)A. B.C. D.【答案】D【詳解】因為SKIPIF1<0,所以SKIPIF1<0圖像與SKIPIF1<0的圖像關(guān)于SKIPIF1<0軸對稱,由SKIPIF1<0解析式,作出SKIPIF1<0的圖像如圖.從而可得SKIPIF1<0圖像為D選項.故選:D.題型12函數(shù)圖象(畫出具體函數(shù)圖象)【典例1】(2023春·福建福州·高二福建省福州延安中學(xué)??紝W(xué)業(yè)考試)給定函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)在所給坐標系(1)中畫出函數(shù)SKIPIF1<0,SKIPIF1<0的大致圖象;(不需列表,直接畫出.)(2)SKIPIF1<0,用SKIPIF1<0表示SKIPIF1<0,SKIPIF1<0中的較小者,記為SKIPIF1<0,請分別用解析法和圖象法表示函數(shù)SKIPIF1<0.(SKIPIF1<0的圖象畫在坐標系(2)中)(3)直接寫出函數(shù)SKIPIF1<0的值域.【答案】(1)圖象見解析.(2)SKIPIF1<0,圖象見解析.(3)SKIPIF1<0.【詳解】(1)-2-1012SKIPIF1<0-6020-6SKIPIF1<0-6-3036∴函數(shù)SKIPIF1<0,SKIPIF1<0的大致圖象如下圖示:(2)由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,結(jié)合(1)的圖象知:SKIPIF1<0,則SKIPIF1<0的圖象如下:(3)由(2)所得圖象知:SKIPIF1<0的值域為SKIPIF1<0.【典例2】(2023春·湖北咸寧·高一??奸_學(xué)考試)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求實數(shù)SKIPIF1<0的值;(2)畫出函數(shù)的圖象并寫出函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的值域;(3)若函數(shù)SKIPIF1<0,求函數(shù)SKIPIF1<0在SKIPIF1<0上最大值.【答案】(1)SKIPIF1<0或SKIPIF1<0;(2)圖象答案見解析,值域為SKIPIF1<0;(3)SKIPIF1<0.【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0得SKIPIF1<0,由上知SKIPIF1<0或SKIPIF1<0.(2)圖象如下圖:SKIPIF1<0,SKIPIF1<0由圖象知函數(shù)SKIPIF1<0的值域為SKIPIF1<0.(3)當(dāng)SKIPIF1<0時,SKIPIF1<0,配方得SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,綜上,SKIPIF1<0.【變式1】(2022秋·高一課時練習(xí))已知函數(shù)SKIPIF1<0,其中[x]表示不超過SKIPIF1<0的最大整數(shù),例如SKIPIF1<0(1)將SKIPIF1<0的解析式寫成分段函數(shù)的形式;(2)請在如圖所示的平面直角坐標系中作出函數(shù)SKIPIF1<0的圖象;(3)根據(jù)圖象寫出函數(shù)SKIPIF1<0的值域.【答案】(1)SKIPIF1<0.(2)作圖見解析(3)SKIPIF1<0.【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0所以SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0.綜上,SKIPIF1<0(2)函數(shù)SKIPIF1<0的圖象如圖所示.(3)由圖象,得函數(shù)SKIPIF1<0的值域為SKIPIF1<0.題型13函數(shù)圖象(根據(jù)實際問題做出函數(shù)圖象)【典例1】(2023春·四川成都·高三四川省成都市玉林中學(xué)??茧A段練習(xí))如圖為某無人機飛行時,從某時刻開始15分鐘內(nèi)的速度SKIPIF1<0(單位:米/分鐘)與時間SKIPIF1<0(單位:分鐘)的關(guān)系.若定義“速度差函數(shù)”SKIPIF1<0為無人機在時間段SKIPIF1<0內(nèi)的最大速度與最小速度的差,則SKIPIF1<0的圖像為(

)A. B.C. D.【答案】C【詳解】由題意可得,當(dāng)SKIPIF1<0時,無人機做勻加速運動,SKIPIF1<0,“速度差函數(shù)”SKIPIF1<0;當(dāng)SKIPIF1<0時,無人機做勻速運動,SKIPIF1<0,“速度差函數(shù)”SKIPIF1<0;當(dāng)SKIPIF1<0時,無人機做勻加速運動,SKIPIF1<0,“速度差函數(shù)”SKIPIF1<0;當(dāng)SKIPIF1<0時,無人機做勻減速運動,“速度差函數(shù)”SKIPIF1<0,結(jié)合選項C滿足“速度差函數(shù)”解析式,故選:C.【典例2】(2023·全國·高三專題練習(xí))如圖,點SKIPIF1<0在邊長為1的正方形的邊上運動,SKIPIF1<0是SKIPIF1<0的中點,則當(dāng)SKIPIF1<0沿SKIPIF1<0運動時,點SKIPIF1<0經(jīng)過的路程SKIPIF1<0與SKIPIF1<0的面積SKIPIF1<0的函數(shù)SKIPIF1<0的圖象大致是下圖中的A. B.C. D.【答案】A【詳解】當(dāng)點SKIPIF1<0在SKIPIF1<0上時:SKIPIF1<0當(dāng)點SKIPIF1<0在SKIPIF1<0上時:SKIPIF1<0當(dāng)點SKIPIF1<0在SKIPIF1<0上時:SKIPIF1<0由函數(shù)可知,有三段直線,又當(dāng)點SKIPIF1<0在SKIPIF1<0上時是減函數(shù)故選:A【變式1】(2023·全國·高三專題練習(xí))如圖,公園里有一處扇形花壇,小明同學(xué)從SKIPIF1<0點出發(fā),沿花壇外側(cè)的小路順時針方向勻速走了一圈(路線為SKIPIF1<0),則小明到SKIPIF1<0點的直線距離SKIPIF1<0與他從SKIPIF1<0點出發(fā)后運動的時間SKIPIF1<0之間的函數(shù)圖象大致是(

)A. B.C. D.【答案】D【詳解】小明沿SKIPIF1<0走時,與SKIPIF1<0點的直線距離保持不變,沿SKIPIF1<0走時,隨時間增加與點SKIPIF1<0的距離越來越小,沿SKIPIF1<0走時,隨時間增加與點SKIPIF1<0的距離越來越大.故選:D.題型14函數(shù)圖象(函數(shù)圖象的變換)【典例1】(多選)(2022秋·重慶萬州·高一校考期中)下列函數(shù)圖像經(jīng)過變換后,過原點的是(

)A.SKIPIF1<0向右平移SKIPIF1<0個單位 B.SKIPIF1<0向左平移SKIPIF1<0個單位C.SKIPIF1<0向上平移SKIPIF1<0個單位 D.SKIPIF1<0向下平移SKIPIF1<0個單位【答案】AC【詳解】SKIPIF1<0向右平移SKIPIF1<0個單位得到SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)圖像過原點,選項A正確;..SKIPIF1<0向左平移SKIPIF1<0個單位得到SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)圖像不過原點,選項B錯誤;SKIPIF1<0向上平移SKIPIF1<0個單位得到SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)圖像過原點,選項C正確;SKIPIF1<0向下平移SKIPIF1<0個單位得到SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)圖像不過原點,選項D錯誤.故選:AC【典例2】(2023·全國·高三對口高考)已知函數(shù)SKIPIF1<0定義在SKIPIF1<0上的圖象如圖所示,請分別畫出下列函數(shù)的圖象:

(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0;(5)SKIPIF1<0;(6)SKIPIF1<0.【答案】(1)答案見解析(2)答案見解析(3)答案見解析(4)答案見解析(5)答案見解析(6)答案見解析【詳解】(1)將函數(shù)SKIPIF1<0的圖象向左平移一個單位可得函數(shù)SKIPIF1<0的圖象,函數(shù)SKIPIF1<0的圖象如圖:

(2)將函數(shù)SKIPIF1<0的圖象向上平移一個單位可得函數(shù)SKIPIF1<0的圖象,函數(shù)SKIPIF1<0圖象如圖:

(3)函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱,函數(shù)SKIPIF1<0圖象如圖:

(4)函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱,函數(shù)SKIPIF1<0的圖象如圖:

(5)將函數(shù)SKIPIF1<0的圖象在SKIPIF1<0軸上方圖象保留,下方的圖象沿SKIPIF1<0軸翻折到SKIPIF1<0軸上方可得函數(shù)SKIPIF1<0的圖象,函數(shù)SKIPIF1<0的圖象如圖:

(6)將函數(shù)SKIPIF1<0的圖象在SKIPIF1<0軸左邊的圖象去掉,在SKIPIF1<0軸右邊的圖象保留,并將右邊圖象沿SKIPIF1<0軸翻折到SKIPIF1<0軸左邊得函數(shù)SKIPIF1<0的圖象,其圖象如圖:

【變式1】(2022秋·重慶萬州·高一??计谥校⒑瘮?shù)SKIPIF1<0的圖象向左平移1個單位,再向下平移3個單位長度,所得的函數(shù)圖象對應(yīng)的解析式為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】函數(shù)SKIPIF1<0的圖象向左平移1個單位得到SKIPIF1<0,再向下平移3個單位長度得到SKIPIF1<0.故選:C題型15函數(shù)圖象(根據(jù)圖象選擇解析式)【典例1】(2023春·四川成都·高二??茧A段練習(xí))我國著名數(shù)學(xué)家華羅庚曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.”在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來研究函數(shù)圖象的特征.我們從這個商標中抽象出一個圖象如圖,其對應(yīng)的函數(shù)可能是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由圖知SKIPIF1<0的定義域為SKIPIF1<0,排除選項A、D,又因為當(dāng)SKIPIF1<0時,SKIPIF1<0,不符合圖象SKIPIF1<0,所以排除選項C,故選:B.【典例2】(2023·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0的大致圖象如圖所示,則SKIPIF1<0的解析式可能是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:由圖可知,當(dāng)SKIPIF1<0時,SKI

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論