




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
9.6導(dǎo)數(shù)的綜合運(yùn)用(精練)(基礎(chǔ)版)題組一題組一零點(diǎn)問題1.(2022·內(nèi)蒙古包頭·高三開學(xué)考試(理))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的單調(diào)區(qū)間;(2)討論SKIPIF1<0的零點(diǎn)情況.【答案】(1)遞增區(qū)間為SKIPIF1<0,遞減區(qū)間為SKIPIF1<0(2)答案見解析【解析】(1)解:當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0在SKIPIF1<0單調(diào)遞減.(2)解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0等價(jià)于SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增;在SKIPIF1<0單調(diào)遞減,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,如圖所示,可得SKIPIF1<0為SKIPIF1<0的極大值,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0只有1個(gè)交點(diǎn),即SKIPIF1<0只有1個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0有2個(gè)交點(diǎn),即SKIPIF1<0有2個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0有3個(gè)交點(diǎn),即SKIPIF1<0有3個(gè)零點(diǎn).綜上,SKIPIF1<0時(shí),SKIPIF1<0只有1個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有2個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有3個(gè)零點(diǎn).2.(2020·陜西·榆林市第十中學(xué)高三期中(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)答案見解析(2)SKIPIF1<0【解析】(1)解:函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0時(shí),對(duì)任意的SKIPIF1<0,SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,此時(shí),函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.綜上所述,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.(2)解:由SKIPIF1<0,可得SKIPIF1<0,其中SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,其中SKIPIF1<0,所以,直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個(gè)交點(diǎn),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以,函數(shù)SKIPIF1<0單調(diào)遞減,所以,函數(shù)SKIPIF1<0的極大值為SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,如下圖所示:由圖可知,當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個(gè)交點(diǎn),因此,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.3.(2022·廣東·金山中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,和SKIPIF1<0,(1)若SKIPIF1<0與SKIPIF1<0有相同的最小值,求SKIPIF1<0的值;(2)設(shè)SKIPIF1<0有兩個(gè)零點(diǎn),求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】(1)SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在R上單調(diào)遞減,無最值,舍去當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0∵SKIPIF1<0,則SKIPIF1<0的定義域?yàn)镾KIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0依題SKIPIF1<0
SKIPIF1<0(2)由題意可知:SKIPIF1<0SKIPIF1<0令SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0,則SKIPIF1<0∵SKIPIF1<0在SKIPIF1<0上單調(diào)遞增則SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上有兩個(gè)零點(diǎn)由(1)可得:SKIPIF1<0,解得:SKIPIF1<0此時(shí)SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn)當(dāng)SKIPIF1<0時(shí),下證SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn)取SKIPIF1<0,則SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0單調(diào)遞減,則SKIPIF1<0,即SKIPIF1<0∵SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0又∵SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0即SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn)則SKIPIF1<0的取值范圍為SKIPIF1<04.(2022·安徽省定遠(yuǎn)縣第三中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)數(shù).(1)判斷并證明SKIPIF1<0在區(qū)間SKIPIF1<0上存在的極大值點(diǎn)個(gè)數(shù);(2)判斷SKIPIF1<0的零點(diǎn)個(gè)數(shù).【答案】(1)SKIPIF1<0在區(qū)間SKIPIF1<0上存在的極大值點(diǎn)個(gè)數(shù)為1,理由見解析;(2)2個(gè)零點(diǎn),理由見解析.【解析】(1)SKIPIF1<0在區(qū)間SKIPIF1<0上存在的極大值點(diǎn)個(gè)數(shù)為1,理由如下:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,SKIPIF1<0,故存在SKIPIF1<0,使得SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0處取得極大值,故SKIPIF1<0在區(qū)間SKIPIF1<0上存在的極大值點(diǎn)個(gè)數(shù)為1;(2)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,①當(dāng)SKIPIF1<0時(shí),由(1)知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0在SKIPIF1<0上的唯一零點(diǎn);②當(dāng)SKIPIF1<0時(shí),由(1)知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,而SKIPIF1<0,SKIPIF1<0,所以存在SKIPIF1<0,使得SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上沒有零點(diǎn);③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,而SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上有唯一零點(diǎn);④當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0在SKIPIF1<0上無零點(diǎn);綜上:SKIPIF1<0有且僅有兩個(gè)零點(diǎn).題組二題組二不等式成立1.(2022·廣東汕頭·高三階段練習(xí))已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0在SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)答案見解析;(2)SKIPIF1<0.【解析】(1)函數(shù)SKIPIF1<0定義域?yàn)镾KIPIF1<0.SKIPIF1<0.令SKIPIF1<0,則有SKIPIF1<0.i.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,有SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單增,無減區(qū)間;ii.當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0解得:SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的對(duì)稱軸SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單增.又SKIPIF1<0,所以SKIPIF1<0恒成立,所以有SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單增,無減區(qū)間;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的對(duì)稱軸SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.由二次函數(shù)的性質(zhì)可得:在SKIPIF1<0上SKIPIF1<0;在SKIPIF1<0上SKIPIF1<0;在SKIPIF1<0上SKIPIF1<0.所以在SKIPIF1<0上,有SKIPIF1<0,SKIPIF1<0單增;在SKIPIF1<0上有SKIPIF1<0,SKIPIF1<0單減;在SKIPIF1<0上有SKIPIF1<0,SKIPIF1<0單增.即SKIPIF1<0在SKIPIF1<0上單增,SKIPIF1<0在SKIPIF1<0上單減,SKIPIF1<0在SKIPIF1<0上單增.綜上所述:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的遞增區(qū)間為SKIPIF1<0,SKIPIF1<0,遞減區(qū)間為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的遞增區(qū)間為SKIPIF1<0,無減區(qū)間.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.SKIPIF1<0在SKIPIF1<0恒成立,可化為SKIPIF1<0在SKIPIF1<0恒成立.即SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0恒成立.令SKIPIF1<0,因?yàn)镾KIPIF1<0為增函數(shù),SKIPIF1<0為增函數(shù),所以SKIPIF1<0為增函數(shù),所以可化為SKIPIF1<0在SKIPIF1<0恒成立,只需SKIPIF1<0在SKIPIF1<0恒成立.記SKIPIF1<0,只需SKIPIF1<0.由(1)可知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0.即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.2.(2022·河南·南陽市第六完全學(xué)校高級(jí)中學(xué)高三階段練習(xí)(文))已知SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)若SKIPIF1<0對(duì)SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以切線方程為:SKIPIF1<0,即SKIPIF1<0.(2)SKIPIF1<0恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,設(shè)SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,在SKIPIF1<0上,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,SKIPIF1<0,故有SKIPIF1<0.3.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0的遞增區(qū)間為SKIPIF1<0,無遞減區(qū)間;(2)SKIPIF1<0【解析】(1)解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,求導(dǎo)SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0在(0,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增,則SKIPIF1<0,∴SKIPIF1<0在(0,+∞)上恒成立,∴SKIPIF1<0的遞增區(qū)間為(0,+∞),無遞減區(qū)間;(2)解:SKIPIF1<0,由(1)知:SKIPIF1<0=SKIPIF1<0,又因?yàn)镾KIPIF1<0在(1,+∞)單調(diào)遞增,則g(x)≥g(1)=2,①當(dāng)a≤2時(shí),SKIPIF1<0,SKIPIF1<0在[1,+∞)單調(diào)遞增,∴SKIPIF1<0,滿足題意.②當(dāng)a>2時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0在[1,+∞)遞增,SKIPIF1<0,SKIPIF1<0,∴?SKIPIF1<0,使SKIPIF1<0,∵SKIPIF1<0在[1,+∞)單調(diào)遞增,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0<0,即SKIPIF1<0<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不滿足題意.∴SKIPIF1<0的取值范圍為SKIPIF1<0,綜上可知:實(shí)數(shù)SKIPIF1<0的取值范圍(﹣SKIPIF1<0,2].4.(2022·河南·商丘市第一高級(jí)中學(xué)高三開學(xué)考試(理))已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0有一個(gè)零點(diǎn),求k的取值范圍;(2)已知函數(shù)SKIPIF1<0,若SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】(1)SKIPIF1<0定義域?yàn)镾KIPIF1<0,由于SKIPIF1<0有一個(gè)零點(diǎn),可得方程SKIPIF1<0有且僅有一個(gè)實(shí)根,令SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0;由SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,∴SKIPIF1<0最大值SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0.畫出SKIPIF1<0大致圖像如圖所示,若直線y=k與SKIPIF1<0的圖像有一個(gè)交點(diǎn),則SKIPIF1<0或SKIPIF1<0.∴k的取值范圍是SKIPIF1<0.(2)方法一:若SKIPIF1<0恒成立,即SKIPIF1<0恒成立.∵SKIPIF1<0,∴SKIPIF1<0恒成立,只需SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,而SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.故SKIPIF1<0.所以SKIPIF1<0的取值范圍是SKIPIF1<0.方法二:由SKIPIF1<0得SKIPIF1<0,現(xiàn)證明在SKIPIF1<0前提下,原式恒成立.∵SKIPIF1<0,∴SKIPIF1<0(*),現(xiàn)證明,SKIPIF1<0,SKIPIF1<0,構(gòu)造SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0成立;構(gòu)造SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0成立,∴(*)式SKIPIF1<0成立,原式得證.5.(2022·河南·滎陽市教育體育局教學(xué)研究室高三開學(xué)考試)已知函數(shù)SKIPIF1<0,SKIPIF1<0(SKIPIF1<0)(1)求SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程(2)若對(duì)于任意的SKIPIF1<0,都有SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)aSKIPIF1<04【解析】(1)解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以切線的斜率SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0;(2)解:若SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,則SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,即SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,令SKIPIF1<0,SKIPIF1<0,只需滿足SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,因?yàn)镾KIPIF1<0,所以由SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí)函數(shù)SKIPIF1<0取得極小值即為最小值,即SKIPIF1<0,所以aSKIPIF1<04.6.(2022·北京·高三開學(xué)考試)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的單調(diào)區(qū)間和極值;(2)若曲線SKIPIF1<0不存在斜率為-2的切線,求a的取值范圍;(3)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,求a的取值范圍.(只需直接寫出結(jié)論)【答案】(1)單調(diào)遞增區(qū)間為SKIPIF1<0和SKIPIF1<0;單調(diào)遞減區(qū)間為SKIPIF1<0;極大值SKIPIF1<0,極小值SKIPIF1<0(2)a的取值范圍為SKIPIF1<0;(3)a的取值范圍為SKIPIF1<0.【解析】(1)由SKIPIF1<0,得SKIPIF1<0.
當(dāng)SKIPIF1<0時(shí),SKIPIF1<0
令SKIPIF1<0,得SKIPIF1<0
此時(shí)SKIPIF1<0,SKIPIF1<0隨SKIPIF1<0的變化如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<00SKIPIF1<00SKIPIF1<0SKIPIF1<0↗極大值↘極小值↗所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0和SKIPIF1<0
SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0
函數(shù)SKIPIF1<0在SKIPIF1<0時(shí),取得極大值SKIPIF1<0,在SKIPIF1<0時(shí),取得極小值SKIPIF1<0.(2)因?yàn)镾KIPIF1<0不存在斜率為SKIPIF1<0的切線,
所以SKIPIF1<0
即方程SKIPIF1<0無解,所以SKIPIF1<0解得SKIPIF1<0,所以a的取值范圍為SKIPIF1<0;(3)不等式SKIPIF1<0可化為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0所以SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上恒成立,當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0的判別式SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以方程SKIPIF1<0有兩個(gè)不相等的實(shí)數(shù)根,設(shè)其根為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上不可能恒成立,綜上可得a的取值范圍為SKIPIF1<0.題組三題組三雙變量1.(2022·黑龍江·高三開學(xué)考試)已知函數(shù)SKIPIF1<0存在兩個(gè)極值點(diǎn)SKIPIF1<0.(1)求SKIPIF1<0的取值范圍;(2)求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】(1)由題意知:SKIPIF1<0定義域?yàn)镾KIPIF1<0,SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0有兩個(gè)不等正根SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.(2)由(1)知:SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的兩根,則SKIPIF1<0;SKIPIF1<0SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0,即SKIPIF1<0的最小值為SKIPIF1<0.2.(2022·河北省曲陽縣第一高級(jí)中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0有兩個(gè)不同的零點(diǎn)SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)詳見解析;(2)證明見解析.【解析】(1)∵SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,SKIPIF1<0;綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,SKIPIF1<0;(2)令SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以只需證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.3.(2021·黑龍江·大慶實(shí)驗(yàn)中學(xué)高三開學(xué)考試(理))已知SKIPIF1<0,SKIPIF1<0為自然對(duì)數(shù)的底數(shù).(1)若SKIPIF1<0是SKIPIF1<0上的單調(diào)函數(shù),求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0有兩個(gè)正極值點(diǎn)SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【解析】(1)SKIPIF1<0若SKIPIF1<0是SKIPIF1<0上的單調(diào)函數(shù),則SKIPIF1<0或SKIPIF1<0在SKIPIF1<0上恒成立,若SKIPIF1<0時(shí),即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0顯然不成立,故SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0成立,SKIPIF1<0時(shí),SKIPIF1<0,問題轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0恒成立,且SKIPIF1<0在SKIPIF1<0恒成立令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0遞增,在SKIPIF1<0遞減,在SKIPIF1<0遞增,SKIPIF1<0趨向于SKIPIF1<0時(shí),SKIPIF1<0趨向于SKIPIF1<0;SKIPIF1<0趨向于SKIPIF1<0時(shí),SKIPIF1<0趨向于SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0趨向于SKIPIF1<0時(shí),SKIPIF1<0趨向于SKIPIF1<0畫出函數(shù)SKIPIF1<0的大致圖象,如圖示:故SKIPIF1<0的取值范圍是SKIPIF1<0;(2)證明:結(jié)合(1)由SKIPIF1<0,得:SKIPIF1<0,若SKIPIF1<0有兩個(gè)正極值點(diǎn)SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0
①
SKIPIF1<0②①SKIPIF1<0②整理得:SKIPIF1<0,要證SKIPIF1<0,只需證明:SKIPIF1<0即可,只需證明SKIPIF1<0,即只需證明SKIPIF1<0即可,而SKIPIF1<0,故原命題成立.4.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0時(shí),SKIPIF1<0,求SKIPIF1<0的取值范圍;(2)當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0有兩個(gè)不相等的實(shí)數(shù)根SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【解析】(1)∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0,與已知矛盾.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,滿足條件;綜上,SKIPIF1<0取值范圍是SKIPIF1<0.(2)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,要證SKIPIF1<0,只需證SKIPIF1<0,∵SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,∴只需證SKIPIF1<0,∵SKIPIF1<0,∴只需證SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0成立,∴SKIPIF1<0.5.(2022·四川涼山)已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)證明:若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】(1)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增(2)證明見解析【解析】(1)由題意知:SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增綜上,SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)證明:∵SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,∴要證SKIPIF1<0,只需證SKIPIF1<0,即證SKIPIF1<0①設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∵SKIPIF1<0,∴SKIPIF1<0,不等式①成立,即SKIPIF1<0成立.6.(2022·廣東·廣州市真光中學(xué)高三開學(xué)考試)已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)討論SKIPIF1<0的極值點(diǎn)個(gè)數(shù);(2)若SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年春八年級(jí)歷史下冊(cè) 第2課 新中國政權(quán)的鞏固教學(xué)實(shí)錄2 川教版
- 乳腺炎的影像診斷
- 土木工程實(shí)習(xí)報(bào)告素材
- 技術(shù)經(jīng)理年度總結(jié)
- 2025家居裝修委托合同書
- 房屋裝修合同完整范文
- 父母贈(zèng)與房屋合同書
- 輪胎購銷合同
- 國防教育研學(xué)
- 企業(yè)顧工合同標(biāo)準(zhǔn)文本
- 7不甘屈辱 奮勇抗?fàn)?圓明園的訴說(教學(xué)設(shè)計(jì))-部編版道德與法治五年級(jí)下冊(cè)
- TSG 23-2021 氣瓶安全技術(shù)規(guī)程 含2024年第1號(hào)修改單
- 刑法學(xué)(上冊(cè))馬工程課件 第1章 刑法概說
- 輸變電工程標(biāo)準(zhǔn)化施工作業(yè)卡-線路施工部分
- 【公開課】復(fù)調(diào)音樂的巡禮+課件-高一音樂人音版必修音樂鑒賞
- 江西住建云-建設(shè)項(xiàng)目數(shù)字化審圖·項(xiàng)目監(jiān)管一體化平臺(tái)-建設(shè)單位用戶手冊(cè)
- 《哈姆萊特》同步練習(xí)-統(tǒng)編版高中語文必修下冊(cè)
- 三字經(jīng)1-36課教案
- [中建]市政基礎(chǔ)設(shè)施工程質(zhì)量標(biāo)準(zhǔn)化圖集ppt
- 服務(wù)方案稅務(wù)咨詢技術(shù)服務(wù)方案參考范本15
- 最新中文版ISO 9001-2015質(zhì)量管理體系標(biāo)準(zhǔn)(精準(zhǔn)完整整理版)
評(píng)論
0/150
提交評(píng)論