新高考數(shù)學(xué)二輪復(fù)習(xí)數(shù)列培優(yōu)專題10 放縮法證明數(shù)列不等式之常數(shù)型與函數(shù)型(含解析)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)數(shù)列培優(yōu)專題10 放縮法證明數(shù)列不等式之常數(shù)型與函數(shù)型(含解析)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)數(shù)列培優(yōu)專題10 放縮法證明數(shù)列不等式之常數(shù)型與函數(shù)型(含解析)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)數(shù)列培優(yōu)專題10 放縮法證明數(shù)列不等式之常數(shù)型與函數(shù)型(含解析)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)數(shù)列培優(yōu)專題10 放縮法證明數(shù)列不等式之常數(shù)型與函數(shù)型(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題10放縮法證明數(shù)列不等式之常數(shù)型與函數(shù)型◆題型一:放縮法證明數(shù)列不等式之常數(shù)型方法解密:放縮法證明數(shù)列不等式屬于數(shù)列大題中較有難度的一種題型.大部分是以證明某個(gè)數(shù)列和大于或小于一個(gè)常數(shù)類型,小部分是證明某個(gè)數(shù)列前n項(xiàng)和或者積大于或小于一個(gè)函數(shù)(下一專題詳解).本專題我們來(lái)介紹最常見(jiàn)的常數(shù)類型.放縮的目的有兩個(gè):一是通過(guò)放縮使數(shù)列的和變換成比如裂項(xiàng)相消等可以簡(jiǎn)單求和的形式,這樣可以方便比較大小.二是兩者之間無(wú)法直接比較大小,這樣我們需要通過(guò)尋找一個(gè)媒介,來(lái)間接比較大小.放縮的原則:放縮必然會(huì)導(dǎo)致數(shù)變大或者變小的情況,我們的原則是越精確越好.在證明過(guò)程中,為了使放縮更精確,往往會(huì)第一項(xiàng)不變,從第二項(xiàng)或者第三項(xiàng)開(kāi)始放縮(例題會(huì)有講解).放縮的方法:(1)當(dāng)我們要證明多項(xiàng)式SKIPIF1<0時(shí),我們無(wú)法直接證明兩者的大小,這時(shí)我們可以將多項(xiàng)式SKIPIF1<0放大為SKIPIF1<0,當(dāng)我們能夠證明SKIPIF1<0,也間接證明了SKIPIF1<0.切不可將SKIPIF1<0縮小為SKIPIF1<0,即使能夠證明SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的關(guān)系無(wú)法得證.(2)當(dāng)我們要證明多項(xiàng)式SKIPIF1<0時(shí),這時(shí)我們可以將多項(xiàng)式SKIPIF1<0縮小為SKIPIF1<0,當(dāng)我們能夠證明SKIPIF1<0,也間接證明了SKIPIF1<0.需要放縮的多項(xiàng)式多以分式形式出現(xiàn),要使得分式的值變大,就是將分母變小,常見(jiàn)是將分母減去一個(gè)正數(shù),比如1.常見(jiàn)的放縮形式:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(5)SKIPIF1<0;(6)SKIPIF1<0;(7)SKIPIF1<0;(8)SKIPIF1<0SKIPIF1<0;(12)SKIPIF1<0.類型一:裂項(xiàng)放縮【經(jīng)典例題1】求證SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以原式得證.為什么第一項(xiàng)沒(méi)有經(jīng)過(guò)放縮,因?yàn)榉帜覆荒転?,所以只能從第二項(xiàng)進(jìn)行放縮.總結(jié):證明數(shù)列之和小于常數(shù)2,式子左側(cè)我們進(jìn)行放大處理,各個(gè)分式分母減去n,可以變換成裂項(xiàng)相消的形式,同時(shí)又能作為媒介與2比較大小.同時(shí)要注意從第幾項(xiàng)開(kāi)始放縮的問(wèn)題.【變式1】求證SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以原式得證.總結(jié):證明數(shù)列之和小于常數(shù)2,式子左側(cè)我們進(jìn)行放大處理,各個(gè)分式分母減去n,可以變換成裂項(xiàng)相消的形式,同時(shí)又能作為媒介與2比較大小.同時(shí)要注意從第幾項(xiàng)開(kāi)始放縮的問(wèn)題.【變式2】求證SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,注意這是保留前兩項(xiàng),從第三項(xiàng)開(kāi)始放縮.總結(jié):通過(guò)例1和變式題我們發(fā)現(xiàn),我們對(duì)分式的進(jìn)行放大,分母我們依次減去的數(shù)是n,1.不難發(fā)現(xiàn),這些數(shù)遞減,所得的結(jié)果也是遞減的.說(shuō)明減去的數(shù)越小,所得的結(jié)果越精確.同時(shí)通過(guò)兩道變?cè)囶}我們也發(fā)現(xiàn),保留前幾項(xiàng)不動(dòng),這樣放縮的精度也會(huì)高一些.有些模擬題中,經(jīng)常出現(xiàn)保留前2項(xiàng)到3項(xiàng)不動(dòng)的情況.那么作為學(xué)生如何判斷從第幾項(xiàng)開(kāi)始放縮呢?這需要學(xué)生去嘗試和試錯(cuò),如果第一項(xiàng)不行,那就嘗試第二項(xiàng),第三項(xiàng).【經(jīng)典例題2】已知SKIPIF1<0,設(shè)SKIPIF1<0,求證:SKIPIF1<0.【解析】已知SKIPIF1<0,因?yàn)镾KIPIF1<0所以SKIPIF1<0,故不等式得證.【經(jīng)典例題3】已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,(1)求SKIPIF1<0;(2)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)證明見(jiàn)解析.【詳解】(1)由題意SKIPIF1<0(SKIPIF1<0),∴SKIPIF1<0,SKIPIF1<0也適合.所以SKIPIF1<0(SKIPIF1<0);(2)由已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此SKIPIF1<0SKIPIF1<0,則SKIPIF1<0綜上,SKIPIF1<0.類型二:等比放縮所謂等比放縮就是數(shù)列本身并非為標(biāo)準(zhǔn)的等比數(shù)列,我們將數(shù)列的通項(xiàng)經(jīng)過(guò)一定的放縮使之成為一個(gè)等比數(shù)列,然后再求和,我們通過(guò)例題進(jìn)行觀察了解.【經(jīng)典例題4】證明:SKIPIF1<0【解析】令SKIPIF1<0,則SKIPIF1<0又因?yàn)镾KIPIF1<0,由于不等式右邊分母為3,因此從第三項(xiàng)開(kāi)始放縮,得SKIPIF1<0故不等式得證.【經(jīng)典例題5】已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求證SKIPIF1<0是等差數(shù)列并求SKIPIF1<0;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0;(3)求證:SKIPIF1<0.【答案】(1)證明見(jiàn)解析,SKIPIF1<0;(2)SKIPIF1<0;(3)證明見(jiàn)解析.【詳解】(1)證明:SKIPIF1<0,∴SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為1的等差數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0.(2)∵SKIPIF1<0,∴SKIPIF1<0,兩式相減得:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.(3)證明:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0.【練習(xí)1】已知數(shù)列SKIPIF1<0中,SKIPIF1<0,其前SKIPIF1<0項(xiàng)的和為SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),滿足SKIPIF1<0.(1)求證:數(shù)列SKIPIF1<0是等差數(shù)列;(2)證明:SKIPIF1<0.【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0從而SKIPIF1<0構(gòu)成以1為首項(xiàng),1為公差的等差數(shù)列.(2)由(1)可知,SKIPIF1<0,SKIPIF1<0.則當(dāng)SKIPIF1<0時(shí)SKIPIF1<0.故當(dāng)SKIPIF1<0時(shí)SKIPIF1<0SKIPIF1<0又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0滿足題意,故SKIPIF1<0.法二:則當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,那么SKIPIF1<0又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)時(shí),SKIPIF1<0滿足題意.【練習(xí)2】已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0.(2)見(jiàn)解析【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0①,SKIPIF1<0②,①SKIPIF1<0②,得:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是以每一項(xiàng)均為SKIPIF1<0的常數(shù)列,則SKIPIF1<0,即SKIPIF1<0;(2)由(1)得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【練習(xí)3】已知函數(shù)SKIPIF1<0,數(shù)列SKIPIF1<0中,若SKIPIF1<0,且SKIPIF1<0.(1)求證:數(shù)列SKIPIF1<0是等比數(shù)列;(2)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)見(jiàn)解析;(2)見(jiàn)解析【解析】(1)由函數(shù)SKIPIF1<0,在數(shù)列SKIPIF1<0中,若SKIPIF1<0,得:SKIPIF1<0,上式兩邊都倒過(guò)來(lái),可得:SKIPIF1<0=SKIPIF1<0=SKIPIF1<0﹣2,∴SKIPIF1<0﹣1=SKIPIF1<0﹣2﹣1=SKIPIF1<0﹣3=3(SKIPIF1<0﹣1).∵SKIPIF1<0﹣1=3.∴數(shù)列SKIPIF1<0是以3為首項(xiàng),3為公比的等比數(shù)列.(2)由(1),可知:SKIPIF1<0=3n,∴an=SKIPIF1<0,n∈N*.∵當(dāng)n∈N*時(shí),不等式SKIPIF1<0<SKIPIF1<0成立.∴Sn=a1+a2+…+an=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0﹣SKIPIF1<0?SKIPIF1<0<SKIPIF1<0.∴SKIPIF1<0.【練習(xí)4】已知函數(shù)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,點(diǎn)SKIPIF1<0均在函數(shù)SKIPIF1<0的圖象上.若SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),試比較SKIPIF1<0與SKIPIF1<0的大??;(2)記SKIPIF1<0試證SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)證明見(jiàn)解析.【詳解】(1)SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0適合上式,因此SKIPIF1<0.從而SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0故SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.◆題型二:放縮法證明數(shù)列不等式之函數(shù)型方法解密:數(shù)列放縮較難的的兩類便是形如數(shù)列的前n項(xiàng)和與函數(shù)SKIPIF1<0的不等關(guān)系,即SKIPIF1<0或者數(shù)列前n項(xiàng)積與函數(shù)SKIPIF1<0的不等關(guān)系,即SKIPIF1<0SKIPIF1<0的問(wèn)題,其中,這里的前n項(xiàng)和與前n項(xiàng)積難求或者是根本無(wú)法求.面對(duì)這類題時(shí),首先,我們可以將SKIPIF1<0看成某個(gè)數(shù)列的和或者積,然后通過(guò)比較通項(xiàng)的大小來(lái)解決;其次,我們也可以對(duì)SKIPIF1<0進(jìn)行變形,使之能求和或者求積.往往第二種方法難以把握,對(duì)學(xué)生綜合素質(zhì)要求較高.而第一種方法相對(duì)簡(jiǎn)單易行,所以本專題以“拆項(xiàng)”為主線詳細(xì)講解.【經(jīng)典例題1】已知數(shù)列SKIPIF1<0(1)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,求證:數(shù)列SKIPIF1<0是等比數(shù)列。(2)若數(shù)列SKIPIF1<0懣足SKIPIF1<0,求證:SKIPIF1<0【解析】(1)由題可知SKIPIF1<0,從而有SKIPIF1<0,所以SKIPIF1<0是以1為首項(xiàng),3為公比的等比數(shù)列.(2)由(1)知SKIPIF1<0,從而SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,欲證SKIPIF1<0,只需證SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),經(jīng)檢驗(yàn)成立當(dāng)SKIPIF1<0時(shí),SKIPIF1<0易證SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.【經(jīng)典例題2】設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)證明:對(duì)一切正整數(shù)SKIPIF1<0,有SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)證明見(jiàn)解析.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,兩式相減得:SKIPIF1<0,整理可得:SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0是首項(xiàng)為2,公比為1的等比數(shù)列,故SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.(2)設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)積SKIPIF1<0,欲證SKIPIF1<0,只需證SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.得證.【練習(xí)1】求證:SKIPIF1<0【解析】不等式左邊是SKIPIF1<0個(gè)式子的乘積,所以也將不等式右邊的SKIPIF1<0看成SKIPIF1<0個(gè)式子的乘積,作商求通項(xiàng).令SKIPIF1<0,則SKIPIF1<0,顯然只需證SKIPIF1<0,即SKIPIF1<0.通過(guò)構(gòu)造函數(shù)SKIPIF1<0證明.令SKIPIF1<0,則SKIPIF1<0,因此SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.該不等式顯然成立,累乘可得SKIPIF1<0,而當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,顯然成立.故不等式得證.【練習(xí)2】已知公差不為0的等差數(shù)列SKIPIF1<0滿足:SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0和前SKIPIF1<0項(xiàng)和SKIPIF1<0;(2)證明不等式SKIPIF1<0且SKIPIF1<0【答案】(1)SKIPIF1<0(SKIPIF1<0)(2)證明見(jiàn)解析【解析】(1)解:設(shè)數(shù)列SKIPIF1<0公差為SKIPIF1<0,

因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列.所以SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故SKIPIF1<0(SKIPIF1<0),(2)設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.欲證SKIPIF1<0,只需證SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0因?yàn)镾KIPIF1<0,易證SKIPIF1<0.,所以SKIPIF1<0.,即SKIPIF1<0.【練習(xí)3】已知正項(xiàng)數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求證:SKIPIF1<0;(2)求證:SKIPIF1<0.【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(2)設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,欲證SKIPIF1<0,只需證SKIPIF1<0.SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.接下來(lái)需要證明SKIPIF1<0通過(guò)構(gòu)造函數(shù)SKIPIF1<0證明.令SKIPIF1<0,則SKIPIF1<0,因此SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0【練習(xí)4】已知各項(xiàng)均為正數(shù)的數(shù)列SKIPIF1<0滿足:SKIPIF1<0,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)SKIPIF1<0與前SKIPIF1<0項(xiàng)和SKIPIF1<0;(2)記SKIPIF1<0,設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,求證SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)證明見(jiàn)解析.【解析】(1)解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0,上述兩個(gè)等式相減可得SKIPIF1<0,所以,SKIPIF1<0,對(duì)任意的SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0且SKIPIF1<0,故數(shù)列SKIPIF1<0為等差數(shù)列,且該數(shù)列的首項(xiàng)和公差均為SKIPIF1<0,故SKIPIF1<0,所以,SKIPIF1<0.(2)設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,欲證SKIPIF1<0,只需證SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0,所以,SKIPIF1<0,因此,SKIPIF1<0.【過(guò)關(guān)檢測(cè)】1.已知數(shù)列SKIPIF1<0中,SKIPIF1<0,其前SKIPIF1<0項(xiàng)和SKIPIF1<0滿足:SKIPIF1<0.(Ⅰ)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(Ⅱ)令SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,證明:對(duì)于任意的SKIPIF1<0,都有SKIPIF1<0.【答案】(Ⅰ)SKIPIF1<0(Ⅱ)見(jiàn)解析【分析】(Ⅰ)由SKIPIF1<0,可得SKIPIF1<0,即數(shù)列SKIPIF1<0時(shí)以1為首項(xiàng)公比為2的等比數(shù)列,即可求解.(Ⅱ)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即有SKIPIF1<0.【詳解】(Ⅰ)由SKIPIF1<0,于是,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,數(shù)列SKIPIF1<0為等比數(shù)列,∴SKIPIF1<0,即SKIPIF1<0.(Ⅱ)SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0顯然成立,綜上,對(duì)于任意的SKIPIF1<0,都有SKIPIF1<0.2.已知正項(xiàng)數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0是等比數(shù)列;(2)證明:SKIPIF1<0.【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【分析】(1)將題干中的等式因式分解后得出SKIPIF1<0,由此得出SKIPIF1<0,再利用定義證明出數(shù)列SKIPIF1<0為等比數(shù)列;(2)求出SKIPIF1<0,利用放縮法得出SKIPIF1<0,結(jié)合等比數(shù)列的求和公式可證明出結(jié)論成立.【詳解】(1)SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,則有SKIPIF1<0且SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列;(2)由(1)得SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0.3.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,前SKIPIF1<0項(xiàng)和SKIPIF1<0滿足SKIPIF1<0是正項(xiàng)等比數(shù)列,且SKIPIF1<0是SKIPIF1<0和SKIPIF1<0的等比中項(xiàng).(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)求證:SKIPIF1<0.【答案】(1)SKIPIF1<0;SKIPIF1<0(2)證明見(jiàn)解析;【解析】(1)當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0,相減得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0符合上式,SKIPIF1<0.設(shè)SKIPIF1<0的公比為SKIPIF1<0,由題意得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0.(2)證明:由題意得SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.4.數(shù)列SKIPIF1<0滿足:SKIPIF1<0;數(shù)列SKIPIF1<0滿足:SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)證明見(jiàn)解析【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與條件等式兩邊相減,得SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0.所以SKIPIF1<0=1,SKIPIF1<0.故有SKIPIF1<0所求通項(xiàng)公式分別為SKIPIF1<0和SKIPIF1<0(2)SKIPIF1<0只需證明SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0,故原不等式成立5.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列.(Ⅰ)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(Ⅱ)設(shè)SKIPIF1<0,求證:對(duì)于任意的SKIPIF1<0,SKIPIF1<0.【答案】(Ⅰ)SKIPIF1<0;(Ⅱ)證明見(jiàn)解析.【解析】(Ⅰ)SKIPIF1<0數(shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,且SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0(Ⅱ)SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,又SKIPIF1<0SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<06.已知正項(xiàng)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0;(2)記SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析【解析】(1)解:由題意得:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0等式兩邊同乘SKIPIF1<0,得SKIPIF1<0整理得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0是首項(xiàng)為1,公差為1的等差數(shù)列∴SKIPIF1<0,SKIPIF1<0;(2)設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.欲證SKIPIF1<0,只需證SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),經(jīng)檢驗(yàn)成立當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0因?yàn)镾KIPIF1<0,易證SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0綜上可證:SKIPIF1<0.7.已知正項(xiàng)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論