版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題01等差列必備知識(shí)點(diǎn)與考點(diǎn)突破【必備知識(shí)點(diǎn)】◆知識(shí)點(diǎn)1:等差數(shù)列1.定義一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,常用字母SKIPIF1<0表示.2.等差數(shù)列的判定(1)SKIPIF1<0(定義法);(2)SKIPIF1<0(中項(xiàng)法);(3)SKIPIF1<0(通項(xiàng)法,一次函數(shù));(4)SKIPIF1<0(和式法,其圖象是過原點(diǎn)的拋物線上的散點(diǎn)).3.等差數(shù)列通項(xiàng)公式SKIPIF1<0的幾何意義是過SKIPIF1<0兩點(diǎn)的直線的斜率.例:已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=1,SKIPIF1<0-SKIPIF1<0=1,則an=(
)A.2n-1 B.n C.2n-1 D.2n-1【答案】A【解析】∵a1=1,SKIPIF1<0-SKIPIF1<0=1,∴SKIPIF1<0是以1為首項(xiàng),以1為公差的等差數(shù)列,∴SKIPIF1<0,即SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0也適合上式,所以SKIPIF1<0.故選:A.◆知識(shí)點(diǎn)2:等差數(shù)列的性質(zhì)設(shè)SKIPIF1<0為等差數(shù)列,公差為SKIPIF1<0,則1.若SKIPIF1<0,則SKIPIF1<0.特別地,(1)若SKIPIF1<0,則SKIPIF1<0;2.若SKIPIF1<0,則SKIPIF1<0;3.若SKIPIF1<0是有窮等差數(shù)列,則與首、末兩項(xiàng)等距離的兩項(xiàng)之和都相等,且等于首、末兩項(xiàng)之和,即SKIPIF1<0.4.數(shù)列SKIPIF1<0是常數(shù))是公差為SKIPIF1<0的等差數(shù)列.5.若SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,SKIPIF1<0與SKIPIF1<0的項(xiàng)數(shù)一致,則數(shù)列SKIPIF1<0SKIPIF1<0為常數(shù))是公差為SKIPIF1<0的等差數(shù)列.6.下標(biāo)成等差數(shù)列且公差為SKIPIF1<0的項(xiàng)SKIPIF1<0組成公差為SKIPIF1<0的等差數(shù)列.7.在等差數(shù)列SKIPIF1<0中,若SKIPIF1<0,則有SKIPIF1<0.例:已知數(shù)列SKIPIF1<0是等差數(shù)列,且SKIPIF1<0,則SKIPIF1<0等于()A.84 B.72 C.60 D.43【答案】C【詳解】∵數(shù)列SKIPIF1<0是等差數(shù)列,且SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0故選:C.例:SKIPIF1<0是等差數(shù)列,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因?yàn)镾KIPIF1<0是等差數(shù)列,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0也成等差數(shù)列,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:B.◆知識(shí)點(diǎn)3:等差數(shù)列前n項(xiàng)和1.等差數(shù)列前n項(xiàng)和公式(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(關(guān)于前n項(xiàng)和的最大值與最小值可選擇此二次函數(shù)形式)2.等差數(shù)列前n項(xiàng)和公式與二次函數(shù)的關(guān)系等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.(1)當(dāng)SKIPIF1<0(即SKIPIF1<0)時(shí),SKIPIF1<0是常數(shù)函數(shù),SKIPIF1<0是各項(xiàng)為0的常數(shù)列.(2)當(dāng)SKIPIF1<0(即SKIPIF1<0)時(shí),SKIPIF1<0是關(guān)于SKIPIF1<0的一次函數(shù),SKIPIF1<0是各項(xiàng)為非零的常數(shù)列.(3)當(dāng)SKIPIF1<0(即SKIPIF1<0)時(shí),SKIPIF1<0是關(guān)于SKIPIF1<0的二次函數(shù)(常數(shù)項(xiàng)為0).從上面的分析,我們可以看出:(1)一個(gè)數(shù)列SKIPIF1<0是等差數(shù)列的條件是其前SKIPIF1<0項(xiàng)和公式SKIPIF1<0是關(guān)于SKIPIF1<0的二次函數(shù)或一次函數(shù)或常數(shù)函數(shù),且SKIPIF1<0為常數(shù)).(2)若一個(gè)數(shù)列SKIPIF1<0前SKIPIF1<0項(xiàng)和的表達(dá)式為SKIPIF1<0為常數(shù)),則當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0不是等差數(shù)列,但從第2項(xiàng)起為等差數(shù)列;(3)由二次函數(shù)圖象可知,當(dāng)SKIPIF1<0時(shí)(SKIPIF1<0是遞增數(shù)列),SKIPIF1<0有最小值;當(dāng)SKIPIF1<0時(shí)(SKIPIF1<0是遞減數(shù)列),SKIPIF1<0有最大值.例:在等差數(shù)列SKIPIF1<0中,SKIPIF1<0,前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0若對(duì)一切正整數(shù)n,均有SKIPIF1<0
成立,則正整數(shù)SKIPIF1<0_____________.【答案】12或13【詳解】等差數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,易得SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0或13時(shí),SKIPIF1<0取得最大值,∴存在正整數(shù)k,使任意SKIPIF1<0,都有SKIPIF1<0恒成立,且k為12或13.故答案為:12或13.◆知識(shí)點(diǎn)4:等差數(shù)列前n項(xiàng)和的性質(zhì)1.等差數(shù)列中依次SKIPIF1<0項(xiàng)之和SKIPIF1<0組成公差為SKIPIF1<0的等差數(shù)列2.若等差數(shù)列的項(xiàng)數(shù)為SKIPIF1<0,則SKIPIF1<03.若等差數(shù)列的項(xiàng)數(shù)為SKIPIF1<0,則SKIPIF1<0(SKIPIF1<0是數(shù)列的中間項(xiàng)),SKIPIF1<04.SKIPIF1<0為等差數(shù)列SKIPIF1<0為等差數(shù)列5.若SKIPIF1<0都為等差數(shù)列,SKIPIF1<0分別為它們的前SKIPIF1<0項(xiàng)和,則SKIPIF1<0例:設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0且SKIPIF1<0則SKIPIF1<0(
)A.2330 B.2130 C.2530 D.2730【答案】D【解析】等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0構(gòu)成等差數(shù)列,即SKIPIF1<0,SKIPIF1<0構(gòu)成等差數(shù)列,則SKIPIF1<0,則SKIPIF1<0故選:D例:設(shè)SKIPIF1<0是等差數(shù)列SKIPIF1<0的前n項(xiàng)和,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】在等差數(shù)列SKIPIF1<0中,由SKIPIF1<0,得SKIPIF1<0,故選:B【核心考點(diǎn)】◆考點(diǎn)1:等差中項(xiàng)1.等差數(shù)列SKIPIF1<0的前三項(xiàng)依次為x,SKIPIF1<0,SKIPIF1<0,則x的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】解:依題意SKIPIF1<0,解得SKIPIF1<0;故選:D2.已知SKIPIF1<0,SKIPIF1<0,則a,b的等差中項(xiàng)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由等差中項(xiàng)的定義得:則a,b的的等差中項(xiàng)為:SKIPIF1<0,SKIPIF1<0.故選:A.3.正項(xiàng)等比數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,若SKIPIF1<0,則SKIPIF1<0(
)A.4 B.8 C.32 D.64【答案】D【解析】由題意可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0或SKIPIF1<0(舍),所以SKIPIF1<0,SKIPIF1<0,故選:D.4.已知SKIPIF1<0為等比數(shù)列,若SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的等差中項(xiàng)為SKIPIF1<0,則SKIPIF1<0的值為(
).A.5 B.512C.1024 D.64【答案】D【解析】解:設(shè)等比數(shù)列SKIPIF1<0的公比為q,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0與SKIPIF1<0的等差中項(xiàng)為SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:D.◆考點(diǎn)2:等差數(shù)列的證明1.等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0則公差SKIPIF1<0(
)A.1 B.2 C.-1 D.-2【答案】D【解析】數(shù)列SKIPIF1<0為等差數(shù),設(shè)其公差為SKIPIF1<0,則等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列;所以SKIPIF1<0,所以SKIPIF1<0.故選:D.2.已知等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則(
)A.?dāng)?shù)列SKIPIF1<0是等差等列 B.?dāng)?shù)列SKIPIF1<0是等差數(shù)列C.?dāng)?shù)列SKIPIF1<0是遞減數(shù)列 D.?dāng)?shù)列SKIPIF1<0是遞增數(shù)列【答案】B【解析】解:因?yàn)榈缺葦?shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0故數(shù)列SKIPIF1<0是以1為首項(xiàng),以2為公比的等比等列,故A錯(cuò)誤;則SKIPIF1<0,SKIPIF1<0故數(shù)列SKIPIF1<0是以0為首項(xiàng),以-1為公差的等差數(shù)列,故B正確;由A知:SKIPIF1<0。故數(shù)列SKIPIF1<0是遞增數(shù)列,故C錯(cuò)誤;由B知:SKIPIF1<0,故數(shù)列SKIPIF1<0是遞減數(shù)列,故D錯(cuò)誤;故選:B3.?dāng)?shù)列{SKIPIF1<0}中SKIPIF1<0,則該數(shù)列中相鄰兩項(xiàng)乘積為負(fù)數(shù)的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】依題意SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,所以SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0故選:C4.設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由SKIPIF1<0得:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公差的等差數(shù)列,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.故選:B.◆考點(diǎn)3:等差數(shù)列的性質(zhì)1.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.6 B.7 C.8 D.9【答案】B【解析】∵SKIPIF1<0,∴SKIPIF1<0是等差數(shù)列.由等差數(shù)列的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.故選:B.2.已知數(shù)列SKIPIF1<0是等差數(shù)列,且滿足SKIPIF1<0,則SKIPIF1<0等于(
)A.84 B.72 C.75 D.56【答案】C【解析】由等差數(shù)列的性質(zhì),得SKIPIF1<0,所以SKIPIF1<0.故選:C.3.在等差數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0(
)A.8 B.12 C.16 D.20【答案】B【解析】由題意,數(shù)列SKIPIF1<0為等差數(shù)列,結(jié)合等差數(shù)列的性質(zhì)得,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:B.4.設(shè)SKIPIF1<0是等差數(shù)列,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0是等差數(shù)列,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,SKIPIF1<0,SKIPIF1<0.故選:D.5.在等差數(shù)列SKIPIF1<0中,SKIPIF1<0為其前SKIPIF1<0項(xiàng)和,若SKIPIF1<0,則SKIPIF1<0()A.20 B.27 C.36 D.45【答案】C【詳解】解:由題意,等差數(shù)列SKIPIF1<0中,滿足SKIPIF1<0,根據(jù)等差數(shù)列的性質(zhì),可得SKIPIF1<0,所以SKIPIF1<0.故選:C.6.等差數(shù)列SKIPIF1<0滿足SKIPIF1<0,則其前10項(xiàng)之和為()A.-9 B.-15 C.15 D.±15【答案】D【詳解】由已知得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.故選:D.7.已知等差數(shù)列SKIPIF1<0且SKIPIF1<0,則數(shù)列SKIPIF1<0的前13項(xiàng)之和為()A.26 B.39 C.104 D.52【答案】A【詳解】由等差數(shù)列的性質(zhì)可得:SKIPIF1<0,SKIPIF1<0,所以由SKIPIF1<0可得:SKIPIF1<0,解得:SKIPIF1<0,所以數(shù)列SKIPIF1<0的前13項(xiàng)之和為SKIPIF1<0,故選:A◆考點(diǎn)4:已知Sn和an的關(guān)系求通項(xiàng)公式1.已知SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,且滿足SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,可得SKIPIF1<0.兩式相減得SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0.則數(shù)列SKIPIF1<0從第二項(xiàng)開始是一個(gè)以3為公比的等比數(shù)列,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:D2.各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且3Sn=anan+1,則a2+a4+a6+…+a2n=()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】當(dāng)n=1時(shí),3S1=a1a2,3a1=a1a2,∴a2=3.當(dāng)n≥2時(shí),由3Sn=anan+1,可得3Sn-1=an-1an,兩式相減得3an=an(an+1-an-1),又∵an≠0,∴an+1-an-1=3,∴{a2n}是以3為首項(xiàng),3為公差的等差數(shù)列,∴a2+a4+a6+…+a2n=SKIPIF1<0,故選:C.3.記數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0是等差數(shù)列 C.SKIPIF1<0是等比數(shù)列 D.SKIPIF1<0【答案】C【詳解】解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以選項(xiàng)A錯(cuò)誤;因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,化為SKIPIF1<0SKIPIF1<0所以數(shù)列SKIPIF1<0是等比數(shù)列.所以選項(xiàng)B錯(cuò)誤,選項(xiàng)C正確;SKIPIF1<0,所以選項(xiàng)D錯(cuò)誤.故選:C4.記數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】依題意SKIPIF1<0,當(dāng)n=1時(shí),a1=2a1-1,解得a1=1;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0,兩式相減,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為1,公比為2的等比數(shù)列,所以SKIPIF1<0,SKIPIF1<0.故選:A.5.已知數(shù)列{an}滿足a1=1,Sn=SKIPIF1<0.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=(-1)n+1SKIPIF1<0,數(shù)列{bn}的前n項(xiàng)和為Tn,求T2021.【答案】(1)an=n(2)SKIPIF1<0【分析】(1)由Sn=SKIPIF1<0,則當(dāng)n≥2時(shí),SKIPIF1<0,相減求得(n-1)an=nan-1,驗(yàn)證n=1后,從而求得數(shù)列{an}的通項(xiàng)公式;(2)代入后利用裂項(xiàng)求和求得T2021的值.(1)解:由題設(shè),Sn=SKIPIF1<0①當(dāng)n≥2時(shí),SKIPIF1<0②①-②,得SKIPIF1<0,則(n-1)an=nan-1.∴SKIPIF1<0.所以an=n.又a1適合上式,故an=n.(2)解:SKIPIF1<0.SKIPIF1<0SKIPIF1<0.◆考點(diǎn)5:等差數(shù)列前n項(xiàng)和的性質(zhì)1.設(shè)等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0()A.45 B.32 C.47 D.54【答案】A【詳解】由題可知:SKIPIF1<0成等差數(shù)列所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0故選:A2.設(shè)SKIPIF1<0是等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,若SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.3【答案】D【詳解】由SKIPIF1<0是等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,SKIPIF1<0SKIPIF1<0.故選:D.3.等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0且SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)SKIPIF1<0的公差為d,∵SKIPIF1<0∴SKIPIF1<0,即{SKIPIF1<0}為等差數(shù)列,公差為SKIPIF1<0,由SKIPIF1<0知SKIPIF1<0,故SKIPIF1<0﹒故選:A﹒4.設(shè)等差數(shù)列SKIPIF1<0與等差數(shù)列SKIPIF1<0的前n項(xiàng)和分別為SKIPIF1<0,SKIPIF1<0.若對(duì)于任意的正整數(shù)n都有SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:B.5.等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.11 B.7 C.9 D.12【答案】C【詳解】由題意,根據(jù)等差數(shù)列的性質(zhì),SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0.故選:C.6.已知等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn和Sn′,如果SKIPIF1<0(n∈N*),則SKIPIF1<0的值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由等差數(shù)列前n項(xiàng)和的性質(zhì),且SKIPIF1<0,可得SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.故選:C.◆考點(diǎn)6:含絕對(duì)值的等差數(shù)列前n項(xiàng)和1.設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)的和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)解:設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,由已知可得SKIPIF1<0,解得SKIPIF1<0,因此,SKIPIF1<0.(2)解:SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,且SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.綜上所述,SKIPIF1<0.2.已知在前SKIPIF1<0項(xiàng)和為SKIPIF1<0的等差數(shù)列SKIPIF1<0中,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)設(shè)數(shù)列SKIPIF1<0的的公差為SKIPIF1<0.SKIPIF1<0SKIPIF1<0故數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0;(2)由SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0故有SKIPIF1<0◆考點(diǎn)7:數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)性質(zhì)1.已知等差數(shù)列SKIPIF1<0共有SKIPIF1<0項(xiàng),其中奇數(shù)項(xiàng)之和為290,偶數(shù)項(xiàng)之和為261,則SKIPIF1<0的值為().A.30 B.29 C.28 D.27【答案】B【詳解】奇數(shù)項(xiàng)共有SKIPIF1<0項(xiàng),其和為SKIPIF1<0,∴SKIPIF1<0.偶數(shù)項(xiàng)共有n項(xiàng),其和為SKIPIF1<0,∴SKIPIF1<0.故選:B.2.(多選)下列結(jié)論中正確的有()A.若SKIPIF1<0為等差數(shù)列,它的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則數(shù)列SKIPIF1<0也是等差數(shù)列B.若SKIPIF1<0為等差數(shù)列,它的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0也是等差數(shù)列C.若等差數(shù)列SKIPIF1<0的項(xiàng)數(shù)為SKIPIF1<0,它的偶數(shù)項(xiàng)和為SKIPIF1<0,奇數(shù)項(xiàng)和為SKIPIF1<0,則SKIPIF1<0D.若等差數(shù)列SKIPIF1<0的項(xiàng)數(shù)為SKIPIF1<0,它的偶數(shù)項(xiàng)和為SKIPIF1<0,奇數(shù)項(xiàng)和為SKIPIF1<0,則SKIPIF1<0【答案】AD【詳解】對(duì)于A,SKIPIF1<0,數(shù)列SKIPIF1<0是等差數(shù)列,故正確;對(duì)于B,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等差數(shù)列,故錯(cuò)誤;對(duì)于C,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故錯(cuò)誤;對(duì)于D,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故正確;故選:AD.3.在等差數(shù)列{an}中,S10=120,且在這10項(xiàng)中,SKIPIF1<0=SKIPIF1<0,則公差d=________.【答案】2【分析】由SKIPIF1<0及SKIPIF1<0=5d即可求解.【詳解】解:由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0=5d=10,所以d=2.故答案為:2.4.已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為377,項(xiàng)數(shù)SKIPIF1<0為奇數(shù),且前SKIPIF1<0項(xiàng)中,奇數(shù)項(xiàng)的和與偶數(shù)項(xiàng)的和之比為7:6,則中間項(xiàng)為________.【答案】29【詳解】因?yàn)镾KIPIF1<0為奇數(shù),所以SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0.故所求的中間項(xiàng)為29.故答案為:295.已知等比數(shù)列SKIPIF1<0共有32項(xiàng),其公比SKIPIF1<0,且奇數(shù)項(xiàng)之和比偶數(shù)項(xiàng)之和少60,則數(shù)列SKIPIF1<0的所有項(xiàng)之和是()A.30 B.60 C.90 D.120【答案】D【詳解】設(shè)等比數(shù)列SKIPIF1<0的奇數(shù)項(xiàng)之和為SKIPIF1<0,偶數(shù)項(xiàng)之和為SKIPIF1<0則SKIPIF1<0,SKIPIF1<0又SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故數(shù)列SKIPIF1<0的所有項(xiàng)之和是SKIPIF1<0.故選:D6.已知項(xiàng)數(shù)為奇數(shù)的等比數(shù)列SKIPIF1<0的首項(xiàng)為1,奇數(shù)項(xiàng)之和為21,偶數(shù)項(xiàng)之和為10,則這個(gè)等比數(shù)列的項(xiàng)數(shù)為()A.5 B.7 C.9 D.11【答案】A【詳解】根據(jù)題意,數(shù)列SKIPIF1<0為等比數(shù)列,設(shè)SKIPIF1<0,又由數(shù)列SKIPIF1<0的奇數(shù)項(xiàng)之和為21,偶數(shù)項(xiàng)之和為10,則SKIPIF1<0,故SKIPIF1<0;故選:SKIPIF1<07.等比數(shù)列的首項(xiàng)為1,項(xiàng)數(shù)是偶數(shù),所有得奇數(shù)項(xiàng)之和為85,所有的偶數(shù)項(xiàng)之和為170,則這個(gè)等比數(shù)列的項(xiàng)數(shù)為()A.4 B.6 C.8 D.10【答案】C【詳解】設(shè)等比數(shù)列項(xiàng)數(shù)為2n項(xiàng),所有奇數(shù)項(xiàng)之和為SKIPIF1<0,所有偶數(shù)項(xiàng)之和為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,結(jié)合等比數(shù)列求和公式有:SKIPIF1<0,解得n=4,即這個(gè)等比數(shù)列的項(xiàng)數(shù)為8.本題選擇C選項(xiàng).◆考點(diǎn)8:等差數(shù)列前n項(xiàng)和的函數(shù)特征1.已知SKIPIF1<0是等差數(shù)列,SKIPIF1<0是其前SKIPIF1<0項(xiàng)和.則“SKIPIF1<0”是“對(duì)于任意SKIPIF1<0且SKIPIF1<0,SKIPIF1<0”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【詳解】由等差數(shù)列前n項(xiàng)和公式知:SKIPIF1<0,∴要使對(duì)于任意SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0是遞增等差數(shù)列,∴“對(duì)于任意SKIPIF1<0且SKIPIF1<0,SKIPIF1<0”必有“SKIPIF1<0”,而SKIPIF1<0,可得SKIPIF1<0,但不能保證“對(duì)于任意SKIPIF1<0且SKIPIF1<0,SKIPIF1<0”成立,∴“SKIPIF1<0”是“對(duì)于任意SKIPIF1<0且SKIPIF1<0,SKIPIF1<0”的必要而不充分條件.故選:B.2.(多選)已知等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則()A.?dāng)?shù)列SKIPIF1<0是遞增數(shù)列 B.SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最大 D.當(dāng)SKIPIF1<0時(shí),n的最大值為14【答案】BCD【詳解】等差數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0公差SKIPIF1<0,數(shù)列SKIPIF1<0是遞減數(shù)列,A錯(cuò)誤SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,B正確.SKIPIF1<0SKIPIF1<0,數(shù)列SKIPIF1<0是遞減數(shù)列,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最大,C正確.SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),n的最大值為14,D正確.故選:BCD.3.(多選)等差數(shù)列{an}的前n項(xiàng)和記為Sn,若a15>0,a16<0,則()A.a(chǎn)1>0 B.d<0C.前15項(xiàng)和S15最大 D.從第32項(xiàng)開始,Sn<0【答案】ABC【詳解】依題意等差數(shù)列{an}滿足a15>0,a16<0,所以前15項(xiàng)為正數(shù),第16項(xiàng)開始為負(fù)數(shù),公差d為負(fù)數(shù),前15項(xiàng)和S15最大,所以ABC選項(xiàng)正確.SKIPIF1<0,所以D選項(xiàng)錯(cuò)誤.故選∶ABC【過關(guān)檢測】一、單選題1.等差數(shù)列SKIPIF1<0中,若SKIPIF1<0,SKIPIF1<0,則公差SKIPIF1<0(
)A.2 B.3 C.4 D.5【答案】A【解析】由SKIPIF1<0,SKIPIF1<0得SKIPIF1<0故選:A2.設(shè)SKIPIF1<0為等差數(shù)列SKIPIF1<0的前n項(xiàng)和,已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.5 B.6 C.7 D.8【答案】C【解析】由已知可得,SKIPIF1<0,解可得SKIPIF1<0,SKIPIF1<0故選:C.3.已知數(shù)列SKIPIF1<0是等差數(shù)列,且滿足SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由等差中項(xiàng)的性質(zhì)可得SKIPIF1<0,則SKIPIF1<0,因此,SKIPIF1<0.故選:C.4.記SKIPIF1<0為等差數(shù)列SKIPIF1<0的前n項(xiàng)和.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.-54 B.-18 C.18 D.36【答案】C【解析】解:設(shè)公差為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.5.已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.52 C.54 D.55【答案】D【解析】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0.又函數(shù)SKIPIF1<0的對(duì)稱軸為直線SKIPIF1<0,而SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0.故選:D.6.等差數(shù)列SKIPIF1<0中,SKIPIF1<0,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.1011 B.2022 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】數(shù)列SKIPIF1<0公差為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故選:B.7.等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,公差為d,已知SKIPIF1<0且SKIPIF1<0.則使SKIPIF1<0成立的最小正整數(shù)n的值為(
)A.4 B.5 C.8 D.9【答案】D【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,所以使SKIPIF1<0成立的最小正整數(shù)n的值為9.故選:D.8.設(shè)SKIPIF1<0是等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0取得最小值時(shí),SKIPIF1<0(
)A.1 B.4 C.7 D.8【答案】D【解析】設(shè)數(shù)列SKIPIF1<0的公差為SKIPIF1<0,由已知得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0遞減,SKIPIF1<0時(shí),SKIPIF1<0遞增,其中SKIPIF1<0,由SKIPIF1<0的表達(dá)式得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所SKIPIF1<0時(shí),SKIPIF1<0最?。蔬x:D.9.等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列結(jié)論錯(cuò)誤的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.?dāng)?shù)列SKIPIF1<0是遞減數(shù)列 D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,故A正確;SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,B正確;由SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,數(shù)列SKIPIF1<0是遞減數(shù)列,故C正確;SKIPIF1<0,D錯(cuò)誤.故選:D10.已知數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,即數(shù)列SKIPIF1<0中的奇數(shù)項(xiàng)依次構(gòu)成首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,所以,SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0,則SKIPIF1<0,兩式相減得SKIPIF1<0,所以,SKIPIF1<0,故SKIPIF1<0,故選:D.二、多選題11.已知SKIPIF1<0是等差數(shù)列,其前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則下列判斷正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABC【解析】因?yàn)镾KIPIF1<0是等差數(shù)列,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,亦即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故選:ABC.12.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0不是等差數(shù)列C.?dāng)?shù)列SKIPIF1<0中SKIPIF1<0最小 D.SKIPIF1<0【答案】BD【解析】解:因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0,顯然當(dāng)SKIPIF1<0時(shí)SKIPIF1<0不成立,所以SKIPIF1<0,所以SKIPIF1<0從第二項(xiàng)起以SKIPIF1<0為公差的等差數(shù)列,故數(shù)列SKIPIF1<0不是等差數(shù)列,即A錯(cuò)誤,B正確;從第二項(xiàng)起SKIPIF1<0為遞增的等差數(shù)列,又SKIPIF1<0,所以SKIPIF1<0為數(shù)列的最小項(xiàng),故C錯(cuò)誤;因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故D正確;故選:BD13.記等差數(shù)列SKIPIF1<0的公差為d,前n項(xiàng)和為SKIPIF1<0,已知SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0是SKIPIF1<0的最小值【答案】BCD【解析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故數(shù)列SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 儀器儀表制造業(yè)新技術(shù)應(yīng)用與創(chuàng)新考核試卷
- 化學(xué)纖維在醫(yī)藥醫(yī)療等行業(yè)的應(yīng)用考核試卷
- 《湖南省財(cái)產(chǎn)保險(xiǎn)發(fā)展對(duì)經(jīng)濟(jì)增長的影響研究》
- 《基于RecurDyn與EDEM聯(lián)合仿真的仿生爪刺機(jī)構(gòu)附著性能研究》
- 《儀式觀視閾下恩施土家女兒會(huì)傳播研究》
- 《種植密度和施肥對(duì)羊草人工草地生長的影響》
- 2024年第三方擔(dān)保服務(wù)協(xié)議2
- 氨基酸肥料制造與應(yīng)用技術(shù)研究的考核試卷
- 2024-2030年中國橡膠軟化劑行業(yè)需求預(yù)測及投資風(fēng)險(xiǎn)研究報(bào)告
- 2024-2030年中國檜腦產(chǎn)業(yè)未來發(fā)展趨勢及投資策略分析報(bào)告
- 石材保溫一體板計(jì)算書分解
- 企業(yè)經(jīng)營狀況問卷調(diào)查表
- Unit+7+Careers+Lesson+1+EQ:IQ+課件+-2023-2024學(xué)年高中英語北師大版2019+選擇性必修第三冊(cè)
- 沙眼衣原體感染
- 搶救車藥物說明書匯編
- 《C語言程序設(shè)計(jì)》課程思政教學(xué)案例(一等獎(jiǎng))
- 2023年大學(xué)試題(法學(xué))-著作權(quán)法考試參考題庫(含答案)
- 綠博園站初步設(shè)計(jì)說明
- 武漢理工大學(xué)計(jì)算機(jī)網(wǎng)絡(luò)試題及答案
- 山地光伏施工組織設(shè)計(jì)
- 漢字演變500例(中)
評(píng)論
0/150
提交評(píng)論