




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題20數(shù)列綜合問題的探究1、【2022年全國(guó)乙卷】嫦娥二號(hào)衛(wèi)星在完成探月任務(wù)后,繼續(xù)進(jìn)行深空探測(cè),成為我國(guó)第一顆環(huán)繞太陽(yáng)飛行的人造行星,為研究嫦娥二號(hào)繞日周期與地球繞日周期的比值,用到數(shù)列bn:b1=1+1α1,A.b1<b5 B.b【答案】D【解析】解:因?yàn)棣羕所以α1<α1+同理α1+1α又因?yàn)?α2>故b2<b以此類推,可得b1>bb11α2>α1+1故選:D.2、【2020年新課標(biāo)2卷理科】0-1周期序列在通信技術(shù)中有著重要應(yīng)用.若序列SKIPIF1<0滿足SKIPIF1<0,且存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0成立,則稱其為0-1周期序列,并稱滿足SKIPIF1<0的最小正整數(shù)SKIPIF1<0為這個(gè)序列的周期.對(duì)于周期為SKIPIF1<0的0-1序列SKIPIF1<0,SKIPIF1<0是描述其性質(zhì)的重要指標(biāo),下列周期為5的0-1序列中,滿足SKIPIF1<0的序列是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由SKIPIF1<0知,序列SKIPIF1<0的周期為m,由已知,SKIPIF1<0,SKIPIF1<0對(duì)于選項(xiàng)A,SKIPIF1<0SKIPIF1<0,不滿足;對(duì)于選項(xiàng)B,SKIPIF1<0,不滿足;對(duì)于選項(xiàng)D,SKIPIF1<0,不滿足;故選:C3、(2020年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(文科)(新課標(biāo)Ⅰ))數(shù)列SKIPIF1<0滿足SKIPIF1<0,前16項(xiàng)和為540,則SKIPIF1<0______________.【答案】SKIPIF1<0【解析】SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0.設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.4、(2021年全國(guó)新高考Ⅰ卷數(shù)學(xué)試題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0(1)記SKIPIF1<0,寫出SKIPIF1<0,SKIPIF1<0,并求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求SKIPIF1<0的前20項(xiàng)和.【解析】(1)由題設(shè)可得SKIPIF1<0又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0故SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0為等差數(shù)列,故SKIPIF1<0.(2)設(shè)SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0.5、【2022年新高考1卷】記Sn為數(shù)列an的前n項(xiàng)和,已知a1(1)求an(2)證明:1a【答案】(1)a(2)見解析【解析】【分析】(1)利用等差數(shù)列的通項(xiàng)公式求得Snan=1+13n?1=n+23,得到Sn=n+2an(2)由(1)的結(jié)論,利用裂項(xiàng)求和法得到1a(1)∵a1=1,∴S1=又∵Snan∴Snan=1+∴當(dāng)n≥2時(shí),Sn?1∴an整理得:n?1a即an∴a=1×3顯然對(duì)于n=1也成立,∴an的通項(xiàng)公式a(2)1a∴1a1+1a2+?+1an(1)證明:a1(2)求集合kb【答案】(1)證明見解析;(2)9.【解析】【分析】(1)設(shè)數(shù)列an的公差為d(2)根據(jù)題意化簡(jiǎn)可得m=2(1)設(shè)數(shù)列an的公差為d,所以,a1+d?2(2)由(1)知,b1=a1=d2,所以bk=am+a題組一等差、等比數(shù)列的含參問題1-1、(2022·湖北·恩施土家族苗族高中高三期末)已知數(shù)列{an}的前n項(xiàng)和為Sn,且2an-Sn=2,記數(shù)列SKIPIF1<0的前n項(xiàng)和為Tn,若對(duì)于任意n∈N*,不等式k>Tn恒成立,則實(shí)數(shù)k的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】依題意SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,兩式相減并化簡(jiǎn)得SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,SKIPIF1<0.SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A1-2、(2022·山東萊西·高三期末)已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等差數(shù)列;數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0;(2)若對(duì)于SKIPIF1<0,總有SKIPIF1<0成立,求實(shí)數(shù)m的取值范圍.【答案】(1)SKIPIF1<0.(2)SKIPIF1<0.【解析】【分析】解:因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0為等差數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,兩式相減得SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0是以2為公比的等比數(shù)列,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0;(2)解:由(1)得不等式為SKIPIF1<0,整理得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.所以實(shí)數(shù)m的取值范圍為SKIPIF1<0.1-3、(2022·湖北武昌·高三期末)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且對(duì)任意SKIPIF1<0,都有SKIPIF1<0.(1)求證:SKIPIF1<0是等比數(shù)列,并求SKIPIF1<0的通項(xiàng)公式;(2)求使得不等式SKIPIF1<0成立的最大正整數(shù)m.【答案】(1)證明見解析;SKIPIF1<0(2)SKIPIF1<0【解析】(1)由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0是等比數(shù)列.所以SKIPIF1<0從而SKIPIF1<0SKIPIF1<0所以,SKIPIF1<0.(2)設(shè)SKIPIF1<0即SKIPIF1<0,所以,SKIPIF1<0,于是,SKIPIF1<0.因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以,使SKIPIF1<0成立的最大正整數(shù)SKIPIF1<0.1-4、(2022·湖北襄陽(yáng)·高三期末)設(shè)SKIPIF1<0是正項(xiàng)等比數(shù)列,SKIPIF1<0是等差數(shù)列,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,是否存在實(shí)數(shù)SKIPIF1<0、SKIPIF1<0,使得SKIPIF1<0前SKIPIF1<0項(xiàng)和為SKIPIF1<0,如果存在,求實(shí)數(shù)SKIPIF1<0、SKIPIF1<0的值,如果不存在,請(qǐng)說明理由.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)存在,SKIPIF1<0,SKIPIF1<0.【解析】【分析】(1)利用等比數(shù)列的通項(xiàng)公式及等差數(shù)列的通項(xiàng)公式即求;(2)由題可得SKIPIF1<0,然后利用錯(cuò)位相減法可得SKIPIF1<0,再結(jié)合條件即得.(1)設(shè)數(shù)列SKIPIF1<0的公比為SKIPIF1<0,數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),又SKIPIF1<0,所以SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0;(2)∵SKIPIF1<0,∴SKIPIF1<0于是SKIPIF1<0,SKIPIF1<0,兩式相減可得:SKIPIF1<0,∴SKIPIF1<0,又因?yàn)镾KIPIF1<0所以存在SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0前SKIPIF1<0項(xiàng)和為SKIPIF1<0.題組二等差、等比數(shù)列中的不等或證明問題2-1、(2022·河北深州市中學(xué)高三期末)已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,若數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)證明見解析;【解析】解:(1)因?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0是首項(xiàng)為3,公比為3的等比數(shù)列,即SKIPIF1<0.(2)由(1)知SKIPIF1<0,SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.2-2、(2022·山東泰安·高三期末)在等比數(shù)列SKIPIF1<0中,SKIPIF1<0分別是下表第一,二,三列中的某一個(gè)數(shù),且SKIPIF1<0中的任何兩個(gè)數(shù)不在下表中的同一行,設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.第一列第二列第三列第一行1SKIPIF1<016第二行27SKIPIF1<0第三行5128(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)證明:數(shù)列SKIPIF1<0中的任意連續(xù)三項(xiàng)按適當(dāng)順序排列后,可以成等差數(shù)列.【答案】(1)SKIPIF1<0(2)證明見解析【解析】(1)當(dāng)SKIPIF1<0時(shí),不論SKIPIF1<0取7還是12都不能與SKIPIF1<0或SKIPIF1<0構(gòu)成等比數(shù)列,不合題意當(dāng)SKIPIF1<0時(shí),當(dāng)且僅當(dāng)SKIPIF1<0時(shí)符合題意,當(dāng)SKIPIF1<0時(shí),不論SKIPIF1<0取7還是SKIPIF1<0都不能與SKIPIF1<0或SKIPIF1<0構(gòu)成等比數(shù)列,不合題意,∴SKIPIF1<0,∴SKIPIF1<0.(2)SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0成等差數(shù)列,∴數(shù)列SKIPIF1<0中的任意連續(xù)三項(xiàng)按適當(dāng)順序排列后可以成等差數(shù)列.2-3、(2022·山東青島·高三期末)已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0.(1)求證:存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0;(2)求數(shù)列SKIPIF1<0的通項(xiàng)公式.【答案】(1)證明見解析(2)SKIPIF1<0【解析】(1)證明:由SKIPIF1<0變形整理得:SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,經(jīng)檢驗(yàn),SKIPIF1<0或SKIPIF1<0都滿足題意.故存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0.(2)由(1)不妨取SKIPIF1<0,則有SKIPIF1<0,而SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,設(shè)其可變形為SKIPIF1<0,解得SKIPIF1<0,即有SKIPIF1<0,而SKIPIF1<0,故數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,經(jīng)檢驗(yàn),SKIPIF1<0也滿足上式,故SKIPIF1<0.題組三等差、等比數(shù)列定義型問題3-1、(2022·山東青島·高三期末)在數(shù)列SKIPIF1<0中,若SKIPIF1<0,(SKIPIF1<0為常數(shù)),則稱SKIPIF1<0為“等方差數(shù)列”,p稱為“公方差”,下列對(duì)“等方差數(shù)列”的判斷正確的是()A.SKIPIF1<0是等方差數(shù)列B.若數(shù)列SKIPIF1<0既是等方差數(shù)列,又是等差數(shù)列,該數(shù)列必為常數(shù)列C.正項(xiàng)等方差數(shù)列SKIPIF1<0的首項(xiàng)SKIPIF1<0,且SKIPIF1<0是等比數(shù)列,則SKIPIF1<0D.若等方差數(shù)列SKIPIF1<0的首項(xiàng)為2,公方差為2,若將SKIPIF1<0,…SKIPIF1<0這種順序排列的10個(gè)數(shù)作為某種密碼,則可以表示512種不同密碼【答案】ABD【解析】選項(xiàng)A.若SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0是等方差數(shù)列,故正確.選項(xiàng)B.由數(shù)列SKIPIF1<0是等差數(shù)列,則SKIPIF1<0由數(shù)列SKIPIF1<0既是等方差數(shù)列,則SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0為常數(shù)列當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,結(jié)合SKIPIF1<0,可得SKIPIF1<0,所以數(shù)列SKIPIF1<0為常數(shù)列故數(shù)列SKIPIF1<0為常數(shù)列,所以選項(xiàng)B正確.選項(xiàng)C.由題意SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0由SKIPIF1<0等比數(shù)列,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,滿足題意,故選項(xiàng)C不正確.選項(xiàng)D.數(shù)列SKIPIF1<0是首項(xiàng)為2,公方差為2的等方差數(shù)列,則SKIPIF1<0由題意SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0中的每一項(xiàng),可能取正或負(fù),有2種取法.所以SKIPIF1<0,…SKIPIF1<0有SKIPIF1<0種不同的排法結(jié)果;所以選項(xiàng)D正確故選:ABD3-2、(2022·山東德州·高三期末)定義在區(qū)間SKIPIF1<0上的函數(shù)SKIPIF1<0,如果對(duì)于任意給定的等比數(shù)列SKIPIF1<0,SKIPIF1<0仍是等比數(shù)列,則稱SKIPIF1<0為“保等比數(shù)列函數(shù)”.下列函數(shù)是“保等比數(shù)列函數(shù)”的為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【解析】設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0.對(duì)于A,則SKIPIF1<0,故A是“保等比數(shù)列函數(shù)”;對(duì)于B,則SKIPIF1<0常數(shù),故B不是“保等比數(shù)列函數(shù)”;對(duì)于C,則SKIPIF1<0,故C是“保等比數(shù)列函數(shù)”;對(duì)于D,則SKIPIF1<0常數(shù),故D不是“保等比數(shù)列函數(shù)”.故選:AC.3-3、(2022·山東青島·高三期末)給定數(shù)列SKIPIF1<0,若滿足SKIPIF1<0,對(duì)于任意的SKIPIF1<0,都有SKIPIF1<0,則稱SKIPIF1<0為“指數(shù)型數(shù)列”.(1)已知數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,證明:SKIPIF1<0為“指數(shù)型數(shù)列”;(2)若數(shù)列SKIPIF1<0滿足:SKIPIF1<0;(I)判斷SKIPIF1<0是否為“指數(shù)型數(shù)列”,若是給出證明,若不是說明理由;(Ⅱ)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)證明見解析(2)(I)是,證明見解析;(Ⅱ)SKIPIF1<0.【解析】(1)SKIPIF1<0SKIPIF1<0為“指數(shù)型數(shù)列”(2)(I)將SKIPIF1<0兩邊同除SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0是以SKIPIF1<0為首項(xiàng),公比為SKIPIF1<0的等比數(shù)列SKIPIF1<0SKIPIF1<0SKIPIF1<0是“指數(shù)型數(shù)列”(Ⅱ)因?yàn)镾KIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<01、(2022·江蘇揚(yáng)州·高三期末)在正項(xiàng)等比數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,記數(shù)列SKIPIF1<0的前n項(xiàng)積為SKIPIF1<0,SKIPIF1<0,則n的最小值為()A.3 B.4 C.5 D.6【答案】C【解析】設(shè)正項(xiàng)等比數(shù)列SKIPIF1<0公比為q,由SKIPIF1<0得SKIPIF1<0,于是得SKIPIF1<0,而SKIPIF1<0,解得SKIPIF1<0,因此,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,從而得:SKIPIF1<0,而SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,所以n的最小值為5.故選:C2、(2022·河北深州市中學(xué)高三期末)已知正項(xiàng)等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,且數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若對(duì)于一切正整數(shù)SKIPIF1<0都有SKIPIF1<0,則數(shù)列SKIPIF1<0的公比SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因?yàn)榈缺葦?shù)列SKIPIF1<0是正項(xiàng)等比數(shù)列,所以SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,不滿足題意;若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故數(shù)列SKIPIF1<0的公比SKIPIF1<0的取值范圍為SKIPIF1<0,故選:B.3、(2021·山東菏澤市·高三期末)已知數(shù)列的前項(xiàng)和是,且,若,則稱項(xiàng)為“和諧項(xiàng)”,則數(shù)列的所有“和諧項(xiàng)”的和為()A.1022 B.1023 C.2046 D.2047【答案】D【解析】當(dāng)時(shí),,∴,又,,∴是等比數(shù)列,公比為2,首項(xiàng)為1,所以,由得,即,∴所求和為.故選:D.4、(2022·河北保定·高三期末)對(duì)于正整數(shù)SKIPIF1<0是小于或等于SKIPIF1<0的正整數(shù)中與SKIPIF1<0互質(zhì)的數(shù)的數(shù)目.函數(shù)SKIPIF1<0以其首名研究者歐拉命名,稱為歐拉函數(shù),例如SKIPIF1<0,則()A.SKIPIF1<0B.?dāng)?shù)列SKIPIF1<0為等比數(shù)列C.?dāng)?shù)列SKIPIF1<0單調(diào)遞增D.?dāng)?shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和恒小于4【答案】ABD【解析】因?yàn)?為質(zhì)數(shù),所以與SKIPIF1<0不互質(zhì)的數(shù)為7,14,21,…,SKIPIF1<0,共有SKIPIF1<0個(gè),所以SKIPIF1<0,故A正確;因?yàn)榕cSKIPIF1<0互質(zhì)的數(shù)為1,2,4,5,7,8,10,11,…,SKIPIF1<0,SKIPIF1<0,共有SKIPIF1<0個(gè),所以SKIPIF1<0,則數(shù)列SKIPIF1<0為等比數(shù)列,故B正確;因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0不是單調(diào)遞增數(shù)列,故C錯(cuò)誤;因?yàn)镾KIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,從而數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,故D正確.故選:ABD5、(2022·廣東羅湖·高三期末)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0(SKIPIF1<0).(1)證明:數(shù)列SKIPIF1<0是等比數(shù)列;(2)記SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,均有SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的最小值.【答案】(1)證明見解析(2)SKIPIF1<0【解析】【分析】(1)對(duì)遞推公式進(jìn)行變形,利用等比數(shù)列的定義進(jìn)行證明;(2)先利用(1)結(jié)論得到SKIPIF1<0,再利用累加法和等比數(shù)列的前n項(xiàng)和公式求出SKIPIF1<0,再求出SKIPIF1<0,再分離參數(shù),利用放縮法進(jìn)行求解.(1)解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列;(2)解:由(1),得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0(SKIPIF1<0),所以SKIPIF1<0SKIPIF1<0(SKIPIF1<0),經(jīng)檢驗(yàn)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,亦滿足SKIPIF1<0,所以SKIPIF1<0(SKIPIF1<0),所以SKIPIF1<0,因?yàn)槿我釹KIPIF1<0,均有SKIPIF1<0,所以SKIPIF1<0(SKIPIF1<0),又因?yàn)?SKIPIF1<0),所以SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的最小值為SKIPIF1<0.6、(2022·廣東佛山·高三期末)設(shè)SKIPIF1<0為等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0成等差數(shù)列.(1)求證:SKIPIF1<0、SKIPIF1<0、SKIPIF1<0成等差數(shù)列;(2)若SKIPIF1<0,SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)積,求SKIPIF1<0的最大值及相應(yīng)SKIPIF1<0的值.【答案】(1)證明見解析;(2)當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0.【解析】【分析】(1)設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,分析得出SKIPIF1<0,利用已知條件可求得SKIPIF1<0的值,再計(jì)算得出SKIPIF1<0,即可證得結(jié)論成立;(2)分析可知SKIPIF1<0是以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列,求得SKIPIF1<0,解不等式SKIPIF1<0,求得SKIPIF1<0的取值范圍,可求得SKIPIF1<0的最大值及其對(duì)應(yīng)的SKIPIF1<0值.(1)解:設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,由已知可得SKIPIF1<0,得SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,因此,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0成等差數(shù)列.(2)解:SKIPIF1<0,所以,數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列,所以,SKIPIF1<0,顯然SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,故當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0取最大值,且SKIPIF1<0.7、(2022·江蘇海門·高三期末)已知{an}是公差不為零的等差數(shù)列,a5=17,a1,a2,a7成等比數(shù)列.(1)求數(shù)列{an}的通項(xiàng)公式;(2)將數(shù)列{an}與{3n}的相同的項(xiàng)按由小到大的順序排列構(gòu)成的數(shù)列記為{bn},求數(shù)列{bn}的前n項(xiàng)和Sn.【答案】(1)an=4n-3(2)SKIPIF1<0【解析】【分析】(1)由SKIPIF1<0及SKIPIF1<0成等差數(shù)列建立等式求解即可;(2)根據(jù)條件求出數(shù)列SKIPIF1<0,再求和即可.(1)設(shè)等差數(shù)列的公差為d,d≠0,由條件得SKIPIF1<0解之得SKIPIF1<0所以數(shù)列SKIPIF1<0的通項(xiàng)公式為an=4n-3.(2)設(shè)4n-3=3m,則n=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,當(dāng)m=2k,k∈N*時(shí),(-1)mSKIPIF1<0+3=4,所以SKIPIF1<0N*,當(dāng)m=2k-1,k∈N*時(shí),(-1)mSKIPIF1<0+3=2,所以SKIPIF1<0N*,所以SKIPIF1<0,所以SKIPIF1<0.8、(2022·江蘇通州·高三期末)已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 買賣及居間服務(wù)協(xié)議
- 2025年通訊接口信號(hào)濾波器項(xiàng)目可行性研究報(bào)告
- 2025年進(jìn)度計(jì)劃軟件項(xiàng)目可行性研究報(bào)告
- 健身健身器材租賃協(xié)議
- 瑜伽行業(yè)練習(xí)過程中身體不適免責(zé)協(xié)議
- 2025年紅玉蘭項(xiàng)目可行性研究報(bào)告
- 跨國(guó)技術(shù)轉(zhuǎn)讓與技術(shù)支持合同
- 2025年電動(dòng)迷你車同步輪項(xiàng)目可行性研究報(bào)告
- 智能機(jī)器人研發(fā)及生產(chǎn)合作協(xié)議
- 西游記里的基礎(chǔ)教育解讀
- GB/T 12628-1990硬磁盤驅(qū)動(dòng)器通用技術(shù)條件
- 2023年水法律法規(guī)學(xué)習(xí)考試題庫(kù)10月
- spm6040無線電發(fā)射設(shè)備型號(hào)核準(zhǔn)檢測(cè)報(bào)告
- ERP生產(chǎn)系統(tǒng)課件
- 掘進(jìn)工作面作業(yè)規(guī)程
- 初中信息技術(shù)課程標(biāo)準(zhǔn)
- 中小學(xué)幼兒園兒童用藥安全及健康教育課件
- 我國(guó)體育行業(yè)存貨管理研究以安踏為例
- 中醫(yī)中藥基礎(chǔ)知識(shí)61張課件
- 陂頭及水池施工專項(xiàng)方案
- 四年級(jí)下冊(cè)科學(xué)第三單元《作業(yè)設(shè)計(jì)》第1-8課習(xí)題答案解析(教科版)
評(píng)論
0/150
提交評(píng)論