版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年人教版七7年級下冊數(shù)學(xué)期末解答題培優(yōu)試卷及答案一、解答題1.(1)若一圓的面積與這個正方形的面積都是,設(shè)圓的周長為,正方形的周長為,則______.(填“=”或“<”或“>”號)(2)如圖,若正方形的面積為,李明同學(xué)想沿這塊正方形邊的方向裁出一塊面積為的長方形紙片,使它的長和寬之比為3:2,他能裁出嗎?請說明理由.2.如圖,用兩個面積為的小正方形拼成一個大的正方形.(1)則大正方形的邊長是___________;(2)若沿著大正方形邊的方向裁出一個長方形,能否使裁出的長方形紙片的長寬之比為5:4,且面積為?3.小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長方形紙片.(1)請幫小麗設(shè)計一種可行的裁剪方案;(2)若使長方形的長寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請幫小麗設(shè)計一種裁剪方案,若不能,請簡要說明理由.4.求下圖的方格中陰影部分正方形面積與邊長.5.有一塊正方形鋼板,面積為16平方米.(1)求正方形鋼板的邊長.(2)李師傅準備用它裁剪出一塊面積為12平方米的長方形工件,且要求長寬之比為,問李師傅能辦到嗎?若能,求出長方形的長和寬;若不能,請說明理由.(參考數(shù)據(jù):,).二、解答題6.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點,點為上一點,連接,若的平分線交線段于點,連接,若,過點作交的延長線于點,且,求的度數(shù).7.閱讀下面材料:小亮同學(xué)遇到這樣一個問題:已知:如圖甲,ABCD,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫出了該問題的證明,請你幫他把證明過程補充完整.證明:過點E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請你參考小亮思考問題的方法,解決問題:如圖乙,已知:直線ab,點A,B在直線a上,點C,D在直線b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線交于點E.①如圖1,當點B在點A的左側(cè)時,若∠ABC=60°,∠ADC=70°,求∠BED的度數(shù);②如圖2,當點B在點A的右側(cè)時,設(shè)∠ABC=α,∠ADC=β,請你求出∠BED的度數(shù)(用含有α,β的式子表示).8.如圖,已知直線射線,.是射線上一動點,過點作交射線于點,連接.作,交直線于點,平分.(1)若點,,都在點的右側(cè).①求的度數(shù);②若,求的度數(shù).(不能使用“三角形的內(nèi)角和是”直接解題)(2)在點的運動過程中,是否存在這樣的偕形,使?若存在,直接寫出的度數(shù);若不存在.請說明理由.9.如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長方形直尺DEFG的EF邊上.(1)根據(jù)圖1填空:∠1=°,∠2=°;(2)現(xiàn)把三角板繞B點逆時針旋轉(zhuǎn)n°.①如圖2,當n=25°,且點C恰好落在DG邊上時,求∠1、∠2的度數(shù);②當0°<n<180°時,是否會存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,請直接寫出所有n的值和對應(yīng)的那兩條垂線;如果不存在,請說明理由.10.問題情境:(1)如圖1,,,.求度數(shù).小穎同學(xué)的解題思路是:如圖2,過點作,請你接著完成解答.問題遷移:(2)如圖3,,點在射線上運動,當點在、兩點之間運動時,,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過點作),請說明理由;(3)在(2)的條件下,如果點在、兩點外側(cè)運動時(點與點、、三點不重合),請你猜想、、之間的數(shù)量關(guān)系并證明.三、解答題11.如圖,以直角三角形的直角頂點為原點,以、所在直線為軸和軸建立平面直角坐標系,點,滿足.(1)點的坐標為______;點的坐標為______.(2)如圖1,已知坐標軸上有兩動點、同時出發(fā),點從點出發(fā)沿軸負方向以1個單位長度每秒的速度勻速移動,點從點出發(fā)以2個單位長度每秒的速度沿軸正方向移動,點到達點整個運動隨之結(jié)束.的中點的坐標是,設(shè)運動時間為.問:是否存在這樣的,使?若存在,請求出的值:若不存在,請說明理由.(3)如圖2,過作,作交于點,點是線段上一動點,連交于點,當點在線段上運動的過程中,的值是否會發(fā)生變化?若不變,請求出它的值:若變化,請說明理由.12.如圖1,E點在上,..(1)求證:(2)如圖2,平分,與的平分線交于H點,若比大,求的度數(shù).(3)保持(2)中所求的的度數(shù)不變,如圖3,平分平分,作,則的度數(shù)是否改變?若不變,請直接寫出答案;若改變,請說明理由.13.已知:直線∥,A為直線上的一個定點,過點A的直線交于點B,點C在線段BA的延長線上.D,E為直線上的兩個動點,點D在點E的左側(cè),連接AD,AE,滿足∠AED=∠DAE.點M在上,且在點B的左側(cè).(1)如圖1,若∠BAD=25°,∠AED=50°,直接寫出ABM的度數(shù);(2)射線AF為∠CAD的角平分線.①如圖2,當點D在點B右側(cè)時,用等式表示∠EAF與∠ABD之間的數(shù)量關(guān)系,并證明;②當點D與點B不重合,且∠ABM+∠EAF=150°時,直接寫出∠EAF的度數(shù).14.已知AB∥CD,點M在直線AB上,點N、Q在直線CD上,點P在直線AB、CD之間,∠AMP=∠PQN=α,PQ平分∠MPN.(1)如圖①,求∠MPQ的度數(shù)(用含α的式子表示);(2)如圖②,過點Q作QE∥PN交PM的延長線于點E,過E作EF平分∠PEQ交PQ于點F.請你判斷EF與PQ的位置關(guān)系,并說明理由;(3)如圖③,在(2)的條件下,連接EN,若NE平分∠PNQ,請你判斷∠NEF與∠AMP的數(shù)量關(guān)系,并說明理由.15.(感知)如圖①,,求的度數(shù).小明想到了以下方法:解:如圖①,過點作,(兩直線平行,內(nèi)錯角相等)(已知),(平行于同一條直線的兩直線平行),(兩直線平行,同旁內(nèi)角互補).(已知),(等式的性質(zhì)).(等式的性質(zhì)).即(等量代換).(探究)如圖②,,,求的度數(shù).(應(yīng)用)如圖③所示,在(探究)的條件下,的平分線和的平分線交于點,則的度數(shù)是_______________.四、解答題16.模型與應(yīng)用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應(yīng)用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點O,若∠M1OMn=m°.在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)17.在中,,,點在直線上運動(不與點、重合),點在射線上運動,且,設(shè).(1)如圖①,當點在邊上,且時,則__________,__________;(2)如圖②,當點運動到點的左側(cè)時,其他條件不變,請猜想和的數(shù)量關(guān)系,并說明理由;(3)當點運動到點的右側(cè)時,其他條件不變,和還滿足(2)中的數(shù)量關(guān)系嗎?請在圖③中畫出圖形,并給予證明.(畫圖痕跡用黑色簽字筆加粗加黑)18.如果三角形的兩個內(nèi)角與滿足,那么我們稱這樣的三角形是“準互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準互余三角形”;(2)關(guān)于“準互余三角形”,有下列說法:①在中,若,,,則是“準互余三角形”;②若是“準互余三角形”,,,則;③“準互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫所有正確說法的序號);(3)如圖2,,為直線上兩點,點在直線外,且.若是直線上一點,且是“準互余三角形”,請直接寫出的度數(shù).19.已知在中,,點在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當點在上時,求度數(shù);(3)將在直線上平移,當以為頂點的三角形是直角三角形時,直接寫出度數(shù).20.閱讀下列材料并解答問題:在一個三角形中,如果一個內(nèi)角的度數(shù)是另一個內(nèi)角度數(shù)的3倍,那么這樣的三角形我們稱為“夢想三角形”例如:一個三角形三個內(nèi)角的度數(shù)分別是120°,40°,20°,這個三角形就是一個“夢想三角形”.反之,若一個三角形是“夢想三角形”,那么這個三角形的三個內(nèi)角中一定有一個內(nèi)角的度數(shù)是另一個內(nèi)角度數(shù)的3倍.(1)如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內(nèi)角的度數(shù)為__________(2)如圖1,已知∠MON=60°,在射線OM上取一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交線段OB于點C(點C不與O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“夢想三角形”,為什么?(3)如圖2,點D在△ABC的邊上,連接DC,作∠ADC的平分線交AC于點E,在DC上取一點F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“夢想三角形”,求∠B的度數(shù).【參考答案】一、解答題1.(1)<;(2)不能,理由見解析【分析】(1)分別根據(jù)圓的面積和正方形的面積得出其半徑或邊長,再分別求得其周長,根據(jù)實數(shù)大小比較的方法,可得答案;(2)設(shè)裁出的長方形的長為,寬為,由題意得關(guān)于解析:(1)<;(2)不能,理由見解析【分析】(1)分別根據(jù)圓的面積和正方形的面積得出其半徑或邊長,再分別求得其周長,根據(jù)實數(shù)大小比較的方法,可得答案;(2)設(shè)裁出的長方形的長為,寬為,由題意得關(guān)于的方程,解得的值,從而可得長方形的長和寬,將其與正方形的邊長比較,可得答案.【詳解】解:(1)圓的面積與正方形的面積都是,圓的半徑為,正方形的邊長為,,,,,.(2)不能裁出長和寬之比為的長方形,理由如下:設(shè)裁出的長方形的長為,寬為,由題意得:,解得或(不合題意,舍去),長為,寬為,正方形的面積為,正方形的邊長為,,不能裁出長和寬之比為的長方形.【點睛】本題考查了算術(shù)平方根在正方形和圓的面積及周長計算中的簡單應(yīng)用,熟練掌握相關(guān)計算公式是解題的關(guān)鍵.2.(1);(2)不能剪出長寬之比為5:4,且面積為的大長方形,理由詳見解析【分析】(1)根據(jù)已知得到大正方形的面積為400,求出算術(shù)平方根即為大正方形的邊長;(2)設(shè)長方形紙片的長為,寬為,根據(jù)解析:(1);(2)不能剪出長寬之比為5:4,且面積為的大長方形,理由詳見解析【分析】(1)根據(jù)已知得到大正方形的面積為400,求出算術(shù)平方根即為大正方形的邊長;(2)設(shè)長方形紙片的長為,寬為,根據(jù)面積列得,求出,得到,由此判斷不能裁出符合條件的大正方形.【詳解】(1)∵用兩個面積為的小正方形拼成一個大的正方形,∴大正方形的面積為400,∴大正方形的邊長為故答案為:20cm;(2)設(shè)長方形紙片的長為,寬為,,解得:,,答:不能剪出長寬之比為5:4,且面積為的大長方形.【點睛】此題考查利用算術(shù)平方根解決實際問題,利用平方根解方程,正確理解題意是解題的關(guān)鍵.3.(1)可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形;(2)不能,理由見解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長為acm∴解析:(1)可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形;(2)不能,理由見解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長為acm∴a2=400又∵a>0∴a=20又∵要裁出的長方形面積為300cm2∴若以原正方形紙片的邊長為長方形的長,則長方形的寬為:300÷20=15(cm)∴可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形(2)∵長方形紙片的長寬之比為3:2∴設(shè)長方形紙片的長為3xcm,則寬為2xcm∴6x2=300∴x2=50又∵x>0∴x=∴長方形紙片的長為又∵>202即:>20∴小麗不能用這塊紙片裁出符合要求的紙片4.8;【分析】用大正方形的面積減去4個小直角三角形的面積可得到所求的正方形的面積為8,然后利用正方形面積公式求8的算術(shù)平方根即可.【詳解】解:正方形面積=4×4-4××2×2=8;正方形的邊解析:8;【分析】用大正方形的面積減去4個小直角三角形的面積可得到所求的正方形的面積為8,然后利用正方形面積公式求8的算術(shù)平方根即可.【詳解】解:正方形面積=4×4-4××2×2=8;正方形的邊長==.【點睛】本題考查了算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的算術(shù)平方根.記為.5.(1)4米(2)見解析【分析】(1)根據(jù)正方形邊長與面積間的關(guān)系求解即可;(2)設(shè)長方形的長寬分別為米、米,由其面積可得x值,比較長方形的長和寬與正方形邊長的大小可得結(jié)論.【詳解】解解析:(1)4米(2)見解析【分析】(1)根據(jù)正方形邊長與面積間的關(guān)系求解即可;(2)設(shè)長方形的長寬分別為米、米,由其面積可得x值,比較長方形的長和寬與正方形邊長的大小可得結(jié)論.【詳解】解:(1)正方形的面積是16平方米,正方形鋼板的邊長是米;(2)設(shè)長方形的長寬分別為米、米,則,,,,,長方形長是米,而正方形的邊長為4米,所以李師傅不能辦到.【點睛】本題考查了算術(shù)平方根的實際應(yīng)用,靈活的利用算術(shù)平方根表示正方形和長方形的邊長是解題的關(guān)鍵.二、解答題6.(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點E作,延長DC至Q,過點M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的解析:(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點E作,延長DC至Q,過點M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質(zhì)及角平分線的定義可推出;設(shè),根據(jù)角的和差可得出,結(jié)合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質(zhì),即可得出答案.【詳解】(1)證明:;(2)過點E作,延長DC至Q,過點M作,,,AF平分FH平分設(shè),.【點睛】本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進行推理是解此題的關(guān)鍵.7.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過點E作EF∥AB,當點B在點A的左側(cè)時,根據(jù)∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過點E作EF∥AB,當點B在點A的左側(cè)時,根據(jù)∠ABC=60°,∠ADC=70°,參考小亮思考問題的方法即可求∠BED的度數(shù);②如圖2,過點E作EF∥AB,當點B在點A的右側(cè)時,∠ABC=α,∠ADC=β,參考小亮思考問題的方法即可求出∠BED的度數(shù).【詳解】解:(1)過點E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過點E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數(shù)為65°;②如圖2,過點E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數(shù)為180°﹣.【點睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì).8.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);②依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=20°解析:(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);②依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=20°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)設(shè)∠EGC=3x,∠EFC=2x,則∠GCF=3x-2x=x,分兩種情況討論:①當點G、F在點E的右側(cè)時,②當點G、F在點E的左側(cè)時,依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°?40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,設(shè)∠EGC=3x°,∠EFC=2x°,①當點G、F在點E的右側(cè)時,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,則∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,則∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②當點G、F在點E的左側(cè)時,反向延長CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【點睛】本題主要考查了平行線的性質(zhì),掌握兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等是解題的關(guān)鍵.9.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據(jù)鄰補角的定義和平行線的性質(zhì)解答;(2)①根據(jù)鄰補角的定義求出∠ABE,再根據(jù)兩直線平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據(jù)鄰補角的定義和平行線的性質(zhì)解答;(2)①根據(jù)鄰補角的定義求出∠ABE,再根據(jù)兩直線平行,同位角相等可得∠1=∠ABE,根據(jù)兩直線平行,同旁內(nèi)角互補求出∠BCG,然后根據(jù)周角等于360°計算即可得到∠2;②結(jié)合圖形,分AB、BC、AC三條邊與直尺垂直討論求解.【詳解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案為:120,90;(2)①如圖2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②當n=30°時,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);當n=90°時,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);當n=120°時,∴AB⊥DE(GF).【點睛】本題考查了平行線角的計算,垂線的定義,主要利用了平行線的性質(zhì),直角三角形的性質(zhì),讀懂題目信息并準確識圖是解題的關(guān)鍵.10.(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=解析:(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點P在BA的延長線上,②當在之間時(點不與點,重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當在延長線時(點不與點重合),;理由:如圖4,過作交于,,,,,,,,又,;②當在之間時(點不與點,重合),.理由:如圖5,過作交于,,,,,,,,又.【點睛】本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯角以及同旁內(nèi)角.三、解答題11.(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對值和算術(shù)平方根的非負性,求得a,b的值,再利用中點坐標公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-解析:(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對值和算術(shù)平方根的非負性,求得a,b的值,再利用中點坐標公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列出關(guān)于t的方程,求得t的值即可;(3)過H點作AC的平行線,交x軸于P,先判定OG∥AC,再根據(jù)角的和差關(guān)系以及平行線的性質(zhì),得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入進行計算即可.【詳解】解:(1)∵+|b-2|=0,∴a-2b=0,b-2=0,解得a=4,b=2,∴A(0,4),C(2,0).(2)存在,理由:如圖1中,D(1,2),由條件可知:P點從C點運動到O點時間為2秒,Q點從O點運動到A點時間為2秒,∴0<t≤2時,點Q在線段AO上,即CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=?OP?yD=(2-t)×2=2-t,S△DOQ=?OQ?xD=×2t×1=t,∵S△ODP=S△ODQ,∴2-t=t,∴t=1.(3)結(jié)論:的值不變,其值為2.理由如下:如圖2中,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如圖,過H點作AC的平行線,交x軸于P,則∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴=2.【點睛】本題主要考查三角形綜合題、非負數(shù)的性質(zhì)、三角形的面積、平行線的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,學(xué)會用轉(zhuǎn)化的思想思考問題.12.(1)見解析;(2)100°;(3)不變,40°【分析】(1)如圖1,延長交于點,根據(jù),,可得,所以,可得,又,進而可得結(jié)論;(2)如圖2,作,,根據(jù),可得,根據(jù)平行線的性質(zhì)得角之間的關(guān)系,再解析:(1)見解析;(2)100°;(3)不變,40°【分析】(1)如圖1,延長交于點,根據(jù),,可得,所以,可得,又,進而可得結(jié)論;(2)如圖2,作,,根據(jù),可得,根據(jù)平行線的性質(zhì)得角之間的關(guān)系,再根據(jù)比大,列出等式即可求的度數(shù);(3)如圖3,過點作,設(shè)直線和直線相交于點,根據(jù)平行線的性質(zhì)和角平分線定義可求的度數(shù).【詳解】解:(1)證明:如圖1,延長交于點,,,,,,,,;(2)如圖2,作,,,,,,平分,,,,,,,平分,,,,,設(shè),,比大,,解得的度數(shù)為;(3)的度數(shù)不變,理由如下:如圖3,過點作,設(shè)直線和直線相交于點,平分,平分,,,,,,,,,由(2)可知:,,,,,,.【點睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).13.(1);(2)①,見解析;②或【分析】(1)由平行線的性質(zhì)可得到:,,再利用角的等量代換換算即可;(2)①設(shè),,利用角平分線的定義和角的等量代換表示出對比即可;②分類討論點在的左右兩側(cè)的情況,解析:(1);(2)①,見解析;②或【分析】(1)由平行線的性質(zhì)可得到:,,再利用角的等量代換換算即可;(2)①設(shè),,利用角平分線的定義和角的等量代換表示出對比即可;②分類討論點在的左右兩側(cè)的情況,運用角的等量代換換算即可.【詳解】.解:(1)設(shè)在上有一點N在點A的右側(cè),如圖所示:∵∴,∴∴(2)①.證明:設(shè),.∴.∵為的角平分線,∴.∵,∴.∴.∴.②當點在點右側(cè)時,如圖:由①得:又∵∴∵∴當點在點左側(cè),在右側(cè)時,如圖:∵為的角平分線∴∵∴,∵∴∴∵∴又∵∴∴當點和在點左側(cè)時,設(shè)在上有一點在點的右側(cè)如圖:此時仍有,∴∴綜合所述:或【點睛】本題主要考查了平行線的性質(zhì),角平分線的定義,角的等量代換等,靈活運用平行線的性質(zhì)和角平分線定義等量代換出角的關(guān)系是解題的關(guān)鍵.14.(1)2α;(2)EF⊥PQ,見解析;(3)∠NEF=∠AMP,見解析【分析】1)如圖①,過點P作PR∥AB,可得AB∥CD∥PR,進而可得結(jié)論;(2)根據(jù)已知條件可得2∠EPQ+2∠PEF=解析:(1)2α;(2)EF⊥PQ,見解析;(3)∠NEF=∠AMP,見解析【分析】1)如圖①,過點P作PR∥AB,可得AB∥CD∥PR,進而可得結(jié)論;(2)根據(jù)已知條件可得2∠EPQ+2∠PEF=180°,進而可得EF與PQ的位置關(guān)系;(3)結(jié)合(2)和已知條件可得∠QNE=∠QEN,根據(jù)三角形內(nèi)角和定理可得∠QNE=(180°﹣∠NQE)=(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,進而可得結(jié)論.【詳解】解:(1)如圖①,過點P作PR∥AB,∵AB∥CD,∴AB∥CD∥PR,∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,∴∠MPQ=∠MPR+∠RPQ=2α;(2)如圖②,EF⊥PQ,理由如下:∵PQ平分∠MPN.∴∠MPQ=∠NPQ=2α,∵QE∥PN,∴∠EQP=∠NPQ=2α,∴∠EPQ=∠EQP=2α,∵EF平分∠PEQ,∴∠PEQ=2∠PEF=2∠QEF,∵∠EPQ+∠EQP+∠PEQ=180°,∴2∠EPQ+2∠PEF=180°,∴∠EPQ+∠PEF=90°,∴∠PFE=180°﹣90°=90°,∴EF⊥PQ;(3)如圖③,∠NEF=∠AMP,理由如下:由(2)可知:∠EQP=2α,∠EFQ=90°,∴∠QEF=90°﹣2α,∵∠PQN=α,∴∠NQE=∠PQN+∠EQP=3α,∵NE平分∠PNQ,∴∠PNE=∠QNE,∵QE∥PN,∴∠QEN=∠PNE,∴∠QNE=∠QEN,∵∠NQE=3α,∴∠QNE=(180°﹣∠NQE)=(180°﹣3α),∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=180°﹣(90°﹣2α)﹣3α﹣(180°﹣3α)=180°﹣90°+2α﹣3α﹣90°+α=α=∠AMP.∴∠NEF=∠AMP.【點睛】本題考查了平行線的性質(zhì),角平分線的性質(zhì),熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.15.[探究]70°;[應(yīng)用]35【分析】[探究]如圖②,根據(jù)AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度數(shù).[應(yīng)用]如圖③所示,在[探究]的條件下,根據(jù)∠PEA的平分線解析:[探究]70°;[應(yīng)用]35【分析】[探究]如圖②,根據(jù)AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度數(shù).[應(yīng)用]如圖③所示,在[探究]的條件下,根據(jù)∠PEA的平分線和∠PFC的平分線交于點G,可得∠G的度數(shù).【詳解】解:[探究]如圖②,過點P作PM∥AB,∴∠MPE=∠AEP=50°(兩直線平行,內(nèi)錯角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一條直線的兩直線平行),∴∠PFC=∠MPF=120°(兩直線平行,內(nèi)錯角相等).∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性質(zhì)).答:∠EPF的度數(shù)為70°;[應(yīng)用]如圖③所示,∵EG是∠PEA的平分線,PG是∠PFC的平分線,∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°,過點G作GM∥AB,∴∠MGE=∠AEG=25°(兩直線平行,內(nèi)錯角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一條直線的兩直線平行),∴∠GFC=∠MGF=60°(兩直線平行,內(nèi)錯角相等).∴∠G=∠MGF-MGE=60°-25°=35°.答:∠G的度數(shù)是35°.故答案為:35.【點睛】本題考查了平行線的判定與性質(zhì)、平行公理及推論,解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).四、解答題16.(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應(yīng)用】(2)分別過E點,F(xiàn)點,G點,H點作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過點O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點睛:本題考查了平行線的性質(zhì),角平分線的定義,解決此類題目,過拐點作平行線是解題的關(guān)鍵,準確識圖理清圖中各角度之間的關(guān)系也很重要.17.(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,根據(jù)三角形外角的性質(zhì)得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形內(nèi)角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如圖②,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,從而得出結(jié)論∠BAD=2∠CDE;(3)如圖③,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,從而得出結(jié)論∠BAD=2∠CDE.【詳解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案為60,30.(2)∠BAD=2∠CDE,理由如下:如圖②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如圖③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【點睛】本題考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),從圖形中得出相關(guān)角度之間的關(guān)系是解題的關(guān)鍵.18.(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準互余三角形”的定義逐個判斷即可;(3)根據(jù)“準互余三角解析:(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準互余三角形”的定義逐個判斷即可;(3)根據(jù)“準互余三角形”的定義,分類討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結(jié)合“準互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線,∴,∴,∴是“準互余三角形”;(2)①∵,∴,∴是“準互余三角形”,故①正確;②∵,,∴,∴不是“準互余三角形”,故②錯誤;③設(shè)三角形的三個內(nèi)角分別為,且,∵三角形是“準互余三角形”,∴或,∴,∴,∴“準互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當2∠A+∠ABC=90°時,△ABP是“準直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當∠A+2∠APB=90°時,△ABP是“準直角三角形”,∵∠ABC=5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版企業(yè)信息工程系統(tǒng)性能評估委托合同3篇
- 2025版學(xué)校學(xué)生食堂餐具清洗消毒服務(wù)合同2篇
- 2025版工業(yè)產(chǎn)品設(shè)計勞務(wù)分包合同示范文本3篇
- 3簡歷篩選技巧
- 2025版新型木工機械設(shè)備租賃服務(wù)合同范本4篇
- 全新神州2025年度車輛租賃合同6篇
- 互聯(lián)網(wǎng)平臺未來發(fā)展趨勢與挑戰(zhàn)考核試卷
- 2025版建筑施工安全環(huán)保綜合服務(wù)合同2篇
- 2025版嬰幼兒輔食委托加工生產(chǎn)及質(zhì)量控制合同3篇
- 2025版企業(yè)商標注冊委托代理服務(wù)合同2篇
- 數(shù)學(xué)-山東省2025年1月濟南市高三期末學(xué)習質(zhì)量檢測濟南期末試題和答案
- 中儲糧黑龍江分公司社招2025年學(xué)習資料
- 湖南省長沙市2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末考試試卷
- 船舶行業(yè)維修保養(yǎng)合同
- 2024年林地使用權(quán)轉(zhuǎn)讓協(xié)議書
- 春節(jié)期間化工企業(yè)安全生產(chǎn)注意安全生產(chǎn)
- 數(shù)字的秘密生活:最有趣的50個數(shù)學(xué)故事
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)一 移動商務(wù)內(nèi)容運營關(guān)鍵要素分解
- 基于ADAMS的汽車懸架系統(tǒng)建模與優(yōu)化
- 當前中國個人極端暴力犯罪個案研究
- 中國象棋比賽規(guī)則
評論
0/150
提交評論