




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市曹楊二中2024屆高二上數(shù)學(xué)期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)在上有兩個極值點,則下列選項中不正確的為()A. B.C. D.2.某中學(xué)初中部共有110名教師,高中部共有150名教師,其性別比例如圖所示,則該校男教師的人數(shù)為()A.167 B.137C.123 D.1133.已知,若,則()A. B.2C. D.e4.已知、,則直線的傾斜角為()A. B.C. D.5.已知直線與圓交于兩點,過分別作的垂線與軸交于兩點,則A.2 B.3C. D.46.在數(shù)列中,,,則()A.985 B.1035C.2020 D.20707.下列結(jié)論中正確的有()A.若,則 B.若,則C.若,則 D.若,則8.“”是“方程表示焦點在x軸上的橢圓”的()A.充要條件 B.必要而不充分條件C.充分而不必要條件 D.既不充分也不必要條件9.已知等比數(shù)列中,,,則公比()A. B.C. D.10.在等差數(shù)列中,,則()A.9 B.6C.3 D.111.直線的傾斜角的取值范圍是()A. B.C. D.12.已知是拋物線:的焦點,直線與拋物線相交于,兩點,滿足,記線段的中點到拋物線的準線的距離為,則的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果圓錐的底面圓半徑為1,母線長為2,則該圓錐的側(cè)面積為___14.計算:________15.如圖是一個邊長為4的正方形二維碼,為了測算圖中黑色部分的面積,在正方形區(qū)域內(nèi)隨機投擲1600個點,其中落入白色部分的有700個點,據(jù)此可估計黑色部分的面積為______________16.已知是橢圓的一個焦點,為橢圓上一點,為坐標原點,若為等邊三角形,則橢圓的離心率為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在所有棱長均為2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求證:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.18.(12分)如圖所示,已知定點為曲線上一個動點,求線段中點的軌跡方程.19.(12分)以直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,已知直線的極坐標方程為,曲線的參數(shù)方程是(為參數(shù)(1)求直線和曲線的普通方程;(2)直線與軸交于點,與曲線交于,兩點,求20.(12分)已知圓心為的圓,滿足下列條件:圓心在軸上,與直線相切,且被軸截得的弦長為,圓的面積小于(1)求圓的標準方程;(2)設(shè)過點的直線與圓交于不同的兩點、,以、為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程,如果不存在,請說明理由21.(12分)已知數(shù)列中,,().(1)求證:是等比數(shù)列,并求的通項公式;(2)數(shù)列滿足,求數(shù)列的前項和為.22.(10分)設(shè)圓的圓心為﹐直線l過點且與x軸不重合,直線l交圓于A,B兩點.過作的平行線交于點P.(1)求點P的軌跡方程;(2)設(shè)點P的軌跡為曲線E,直線l交E于M,N兩點,C在線段上運動,原點O關(guān)于C的對稱點為Q,求四邊形面積的取值范圍;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求導(dǎo),根據(jù)題意可得,從而可得出答案.【詳解】解:,因為函數(shù)在上有兩個極值點,所以,即.所以ABD正確,C錯誤.故選:C.2、C【解析】根據(jù)圖形分別求出初中部和高中部男教師的人數(shù),最后相加即可.【詳解】初中部男教師的人數(shù)為110×(170%)=33;高中部男教師的人數(shù)為150×60%=90,∴該校男教師的人數(shù)為33+90=123.故選:C.3、B【解析】求得導(dǎo)函數(shù),則,計算即可得出結(jié)果.【詳解】,.,解得:.故選:B4、B【解析】設(shè)直線的傾斜角為,利用直線的斜率公式求出直線的斜率,進而可得出直線的傾斜角.【詳解】設(shè)直線的傾斜角為,由斜率公式可得,,因此,.故選:B.5、D【解析】由題意,圓心到直線的距離,∴,∵直線∴直線的傾斜角為,∵過分別作的垂線與軸交于兩點,∴,故選D.6、A【解析】根據(jù)累加法得,,進而得.【詳解】解:因為所以,當(dāng)時,,,……,,所以,將以上式子相加得,所以,,.當(dāng)時,,滿足;所以,.所以.故選:A7、D【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和運算法則分別計算函數(shù)的導(dǎo)數(shù),即可判斷選項.【詳解】A.若,則,故A錯誤;B.若,則,故B錯誤;C.若,則,故C錯誤;D.若,則,故D正確.故選:D8、A【解析】由橢圓的標準方程結(jié)合充分必要條件的定義即得.【詳解】若,則方程表示焦點在軸上的橢圓;反之,若方程表示焦點在軸上的橢圓,則;所以“”是“方程表示焦點在x軸上的橢圓”的充要條件.故選:A.9、C【解析】利用等比中項的性質(zhì)可求得的值,再由可求得結(jié)果.【詳解】由等比中項的性質(zhì)可得,解得,又,,故選:C.10、A【解析】直接由等差中項得到結(jié)果.詳解】由得.故選:A.11、A【解析】由直線方程求得直線斜率的范圍,再由斜率等于傾斜角的正切值可得直線的傾斜角的取值范圍.【詳解】∵直線的斜率,,設(shè)直線的傾斜角為,則,解得.故選:A.12、C【解析】設(shè),過點,分別作拋物線的準線的垂線,垂足分別為,進而得,再結(jié)合余弦定理得,進而根據(jù)基本不等式求解得.【詳解】解:設(shè),過點,分別作拋物線的準線的垂線,垂足分別為,則,因為點為線段中點,所以根據(jù)梯形中位線定理得點到拋物線的準線的距離為,因為,所以在中,由余弦定理得,所以,又因為,所以,當(dāng)且僅當(dāng)時等號成立,所以,故.所以的最大值為.故選:C【點睛】本題考查拋物線的定義,直線與拋物線的位置關(guān)系,余弦定理,基本不等式,考查運算求解能力,是中檔題.本題解題的關(guān)鍵在于根據(jù)題意,設(shè),進而結(jié)合拋物線的定于與余弦定理得,,再求最值.二、填空題:本題共4小題,每小題5分,共20分。13、2π【解析】由圓錐的側(cè)面積公式即可求解【詳解】由題意,圓錐底面周長為2π×1=2π,又母線長為2,所以圓錐的側(cè)面積故答案為:2π.14、【解析】根據(jù)無窮等比數(shù)列的求和公式直接即可求出答案.【詳解】.故答案為:.15、9【解析】先根據(jù)點數(shù)求解概率,再結(jié)合幾何概型求解黑色部分的面積【詳解】由題設(shè)可估計落入黑色部分概率設(shè)黑色部分的面積為,由幾何概型計算公式可得解得故答案為:916、##【解析】根據(jù)題中幾何關(guān)系,求得點坐標,代入橢圓方程求得齊次式,整理化簡即可求得離心率.【詳解】根據(jù)題意,取點為第一象限的點,過點作的垂線,垂足為,如下所示:因為△為等邊三角形,又,故可得則點的坐標為,代入橢圓方程可得:,又,整理得:,即,解得(舍)或.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)通過計算·=0來證得AB1⊥BC.(2)通過證明A1C⊥AC1、A1C⊥AC1來證得A1C⊥平面AB1C1.【詳解】證明:(1)易知<>=120°,=+,則·=(+)·=·+·=2×2×+2×2×=0.所以AB1⊥BC.(2)易知四邊形AA1C1C為菱形,所以A1C⊥AC1.因為·=(-)·(-)=(-)·(--)=·-·-·-·+·+·=·-·-·+·=2×2×-4-2×2×+4=0,所以AB1⊥A1C,又AC1∩AB1=A,所以A1C⊥平面AB1C1.18、【解析】設(shè)線段的中點的坐標為,點的坐標為,根據(jù)中點坐標公式和代入法求得線段中點的軌跡方程.【詳解】解設(shè)線段的中點的坐標為,點的坐標為,則用代入法求得所求方程為.【點睛】本題考查了中點坐標公式和代入法求動點的軌跡方程,屬于容易題.19、(1),(2)4【解析】(1)根據(jù),即可將直線的極坐標方程轉(zhuǎn)化為普通方程;消參數(shù),即可求出曲線的普通方程;(2)由題意易知,求出直線的參數(shù)方程,將其代入曲線的普通方程,利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,即可求出結(jié)果【小問1詳解】解:直線極坐標方程為,即,又,可得的普通方程為,曲線的參數(shù)方程是(為參數(shù),消參數(shù),所以曲線的普通方程為【小問2詳解】解:在中令得,,傾斜角,的參數(shù)方程可設(shè)為,即(為參數(shù)),將其代入,得,,設(shè),對應(yīng)的參數(shù)分別為,,則,,,異號,.20、(1);(2)不存在,理由見解析.【解析】(1)設(shè)圓心,設(shè)圓的半徑為,可得出,根據(jù)已知條件可得出關(guān)于實數(shù)的方程,求出的值,可得出的值,進而可得出圓的標準方程;(2)分析可知直線的斜率存在,可設(shè)直線的方程為,設(shè)點、,將直線的方程與圓的方程聯(lián)立,由可求得的取值范圍,列出韋達定理,分析可得,可求得點的坐標,由已知可得出,求出的值,檢驗即可得出結(jié)論.【小問1詳解】解:設(shè)圓心,設(shè)圓的半徑為,則,由題意可得,由勾股定理可得,則,由題意可得,解得,則,因此,圓的標準方程為.【小問2詳解】解:若直線的斜率不存在,此時直線與軸重合,則、、三點共線,不合乎題意.所以,直線的斜率存在,可設(shè)直線的方程為,設(shè)點、,聯(lián)立,可得,,解得或,由韋達定理可得,,則,因為四邊形為平行四邊形,則,因為,則,則,解得,因為或,因此,不存直線,使得直線與恰好平行.21、(1)(2)【解析】由已知式子變形可得是以為首項,為公比的等比數(shù)列,由等比數(shù)列的通項公式易得利用錯位相減法,得到數(shù)列的前項和為解析:(1)由,()知,又,∴是以為首項,為公比的等比數(shù)列,∴,∴(2),,兩式相減得,∴點睛:本題主要考查數(shù)列的證明,錯位相減法等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力,轉(zhuǎn)化能力和計算能力.第一問中將已知的遞推公式進行變形,轉(zhuǎn)化為的形式來證明,還可以根據(jù)等比數(shù)列的定義來證明;第二問,將第一問中得到的結(jié)論代
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《杰出演示的策略》課件
- 貨車租賃合同的市場適應(yīng)性研究
- 服裝生產(chǎn)合作協(xié)議
- 雙語客運值班員乘車憑證課件
- 鐵道機車專業(yè)教學(xué)鄭州鐵路張中央58課件
- 鐵路工程安全技術(shù)石家莊鐵路40課件
- 《Python程序設(shè)計基礎(chǔ)》課件 第八章 文件與異常
- 中國中小學(xué)食品安全課件
- 大學(xué)生職業(yè)規(guī)劃大賽《應(yīng)用化學(xué)專業(yè)》生涯發(fā)展展示
- 專利合作開發(fā)合同格式
- 湖北省武漢市2025屆高中畢業(yè)生四月調(diào)研考試語文試卷及答案(武漢四調(diào))
- 2025年無錫市錫山環(huán)保能源集團招聘筆試參考題庫含答案解析
- 渣土清運協(xié)議
- DB37-T 3658-2019地質(zhì)災(zāi)害治理工程施工技術(shù)規(guī)范
- 《平行四邊形的面積》 教學(xué)課件
- 招投標評分索引表模板
- 運輸風(fēng)險防控記錄表
- 紅星美凱龍商場管理制度全套
- Q∕GDW 12151-2021 采用對接裝置的輸電線路流動式起重機組塔施工工藝導(dǎo)則
- 《敘事式心理治療》精品PPT
- 高速鐵路知識PPT通用PPT課件
評論
0/150
提交評論