上海市同洲模范學校2023年高二數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第1頁
上海市同洲模范學校2023年高二數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第2頁
上海市同洲模范學校2023年高二數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第3頁
上海市同洲模范學校2023年高二數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第4頁
上海市同洲模范學校2023年高二數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

上海市同洲模范學校2023年高二數(shù)學第一學期期末教學質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“楊輝三角”是中國古代重要的數(shù)學成就,它比西方的“帕斯卡三角形”早了多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù),,,,…構成的數(shù)列的第項,則的值為()A. B.C. D.2.在等差數(shù)列中,已知,則數(shù)列的前6項之和為()A.12 B.32C.36 D.723.連續(xù)拋擲一枚硬幣3次,觀察正面出現(xiàn)的情況,事件“至少2次出現(xiàn)正面”的對立事件是()A.只有2次出現(xiàn)反面 B.至多2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面4.已知圓:的面積被直線平分,圓:,則圓與圓的位置關系是()A.相離 B.相交C.內(nèi)切 D.外切5.已知雙曲線的離心率為,則該雙曲線的漸近線方程為()A. B.C. D.6.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點,過F1的直線與雙曲線左、右兩支分別交于點P、Q.若,M為PQ的中點,且,則雙曲線的離心率為()A. B.C. D.7.已知直線與直線垂直,則()A. B.C. D.8.已知數(shù)列滿足,,在()A.25 B.30C.32 D.649.傾斜角為45°,在軸上的截距是的直線方程為()A. B.C. D.10.已知函數(shù),,若對任意的,,都有成立,則實數(shù)的取值范圍是()A. B.C. D.11.已知橢圓C的焦點為,過F2的直線與C交于A,B兩點.若,,則C的方程為A. B.C. D.12.已知方程表示焦點在軸上的橢圓,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與直線垂直,則__________14.攢尖是古代中國建筑中屋頂?shù)囊环N結構形式,依其平面有圓形攢尖、三角攢尖、四角攢尖、八角攢尖.如圖屬重檐四角攢尖,它的上層輪廓可近似看作一個正四棱錐,若此正四棱錐的側面積是底面積的2倍,則側面與底面的夾角為___________15.寫出一個漸近線的傾斜角為且焦點在y軸上的雙曲線標準方程___________.16.某人實施一項投資計劃,從2021年起,每年1月1日,把上一年工資的10%投資某個項目.已知2020年他的工資是10萬元,預計未來十年每年工資都會逐年增加1萬元;若投資年收益是10%,一年結算一次,當年的投資收益自動轉入下一年的投資本金,若2031年1月1日結束投資計劃,則他可以一次性取出的所有投資以及收益應有__________萬元.(參考數(shù)據(jù):,,)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的左、右焦點分別為,,離心率等于,點,且的面積等于(1)求橢圓的標準方程;(2)已知斜率存在且不為0的直線與橢圓交于A,B兩點,當點A關于y軸的對稱點在直線PB上時,直線是否過定點?若過定點,求出此定點;若不過,請說明理由18.(12分)已知圓C經(jīng)過點,,且它的圓心C在直線上.(1)求圓C的方程;(2)過點作圓C的兩條切線,切點分別為M,N,求三角形PMN的面積.19.(12分)已知雙曲線C:(a>0,b>0)的離心率為,實軸長為2.(1)求雙曲線的焦點到漸近線的距離;(2)若直線y=x+m被雙曲線C截得的弦長為,求m的值.20.(12分)已知點是橢圓上的一點,且橢圓的離心率.(1)求橢圓的標準方程;(2)兩動點在橢圓上,總滿足直線與的斜率互為相反數(shù),求證:直線的斜率為定值.21.(12分)如圖所示,在四棱錐中,底面是正方形,側棱底面,,是的中點,過點作交于點.求證:(1)平面;(2)平面.22.(10分)已知,(1)當時,求函數(shù)的單調(diào)遞減區(qū)間;(2)當時,,求實數(shù)a的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)楊輝三角可得數(shù)列的遞推公式,結合累加法可得數(shù)列的通項公式與.【詳解】由已知可得數(shù)列的遞推公式為,且,且,故,,,,,等式左右兩邊分別相加得,,故選:B.2、C【解析】利用等差數(shù)列的求和公式結合角標和定理即可求解.【詳解】解:等差數(shù)列中,所以等差數(shù)列的前6項之和為:故選:C.3、D【解析】根據(jù)對立事件的定義即可得出結果.【詳解】對立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對立事件為0次或1次出現(xiàn)正面,即“有2次或3次出現(xiàn)反面”故選:D4、D【解析】根據(jù)題意,圓:的面積被直線平分,即直線經(jīng)過圓的圓心,由此求出兩圓的圓心和半徑,然后判斷兩個圓的位置關系即可【詳解】根據(jù)題意,圓:,即,其圓心為,半徑,圓:的面積被直線平分,即直線經(jīng)過圓的圓心,則有1?m+1=0,解可得m=2,即所以圓的圓心(1,?1),半徑為1,圓的標準方程是,圓心(?2,3),半徑為4,其圓心距,所以兩個圓外切,故選:D.5、C【解析】求得,由此求得雙曲線的漸近線方程.【詳解】離心率,則,所以漸近線方程.故選:C6、D【解析】由題干條件得到,設出,利用雙曲線定義表達出其他邊長,得到方程,求出,從而得到,,利用勾股定理求出的關系,求出離心率.【詳解】因為M為PQ的中點,且,所以△為等腰三角形,即,因為,設,則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D7、D【解析】根據(jù)互相垂直兩直線的斜率關系進行求解即可.【詳解】由,所以直線的斜率為,由,所以直線的斜率為,因為直線與直線垂直,所以,故選:D8、A【解析】根據(jù)題中條件,得出數(shù)列公差,進而可求出結果.【詳解】由得,所以數(shù)列是以為公差的等差數(shù)列,又,所以.故選:A.【點睛】本題主要考查等差數(shù)列的基本量運算,屬于基礎題型.9、B【解析】先由傾斜角為45°,可得其斜率為1,再由軸上的截距是,可求出直線方程【詳解】解:因為直線的傾斜角為45°,所以直線的斜率為,因為直線在軸上的截距是,所以所求的直線方程為,即,故選:B10、B【解析】根據(jù)題意,將問題轉化為對任意的,,利用導數(shù)求得的最大值,再分離參數(shù),構造函數(shù),利用導數(shù)求其最大值,即可求得參數(shù)的取值范圍.【詳解】由題可知:對任意的,,都有恒成立,故可得對任意的,;又,則,故在單調(diào)遞減,在單調(diào)遞增,又,,則當時,,.對任意的,,即,恒成立.也即,不妨令,則,故在單調(diào)遞增,在單調(diào)遞減.故,則只需.故選:B.11、B【解析】由已知可設,則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設,則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設,則,由橢圓的定義有.在和中,由余弦定理得,又互補,,兩式消去,得,解得.所求橢圓方程為,故選B【點睛】本題考查橢圓標準方程及其簡單性質(zhì),考查數(shù)形結合思想、轉化與化歸的能力,很好的落實了直觀想象、邏輯推理等數(shù)學素養(yǎng)12、D【解析】根據(jù)已知條件可得出關于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】因為方程表示焦點在軸上的橢圓,則,解得.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、-3【解析】因為直線與直線垂直,所以考點:本題考查兩直線垂直的充要條件點評:若兩直線方程分別為,則他們垂直的充要條件是14、【解析】設此四棱錐P-ABCD底面邊長為,斜高為,連結AC、BD交于點O,連結OP.則以O為原點,為x、y、z軸正半軸建立空間直角坐標系,用向量法求出側面與底面夾角.【詳解】設此四棱錐P-ABCD底面邊長為,斜高為,連結AC、BD交于點O,連結OP.則,,以O為原點,為x、y、z軸正半軸建立空間直角坐標系則,,設平面的法向量為,則,令,則,顯然平面的法向量為所以,所以側面與底面的夾角為故答案為:.15、(答案不唯一)【解析】根據(jù)已知條件寫出一個符合條件的方程即可.【詳解】如,焦點在y軸上,令,得漸近線方程為,其中的傾斜角為.故答案為:(答案不唯一).16、24【解析】根據(jù)條件求得每一年投入在最終結算時的總收入,利用錯位相減法求得總收入.【詳解】由題知,2021年的投入在結算時的收入為,2022年的投入在結算時的收入為,,2030年的投入在結算時的收入為,則結算時的總投資及收益為:①,則②,由①-②得,,則,故答案為:24三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)用待定系數(shù)法求出橢圓的標準方程;(2)設直線的方程為,設,用“設而不求法”表示出和.表示出直線PB,把A關于y軸的對稱點為帶入后整理化簡,即可得到,從而可以判斷出直線恒過定點.【小問1詳解】由題意可得:,解得:,所以橢圓的標準方程為:.【小問2詳解】由題意可知,直線的斜率存在且不為0,設直線的方程為,設設點A關于y軸的對稱點為.聯(lián)立方程組,消去y可得:,所以.因為直線PB的方程為,且點D在直線PB上,所以則,所以,則,故,因為k≠0,所以,則直線l的方程為,所以直線恒過定點.18、(1);(2).【解析】(1)由題設知,設圓心,應用兩點距離公式列方程求參數(shù)a,進而確定圓心坐標、半徑,寫出圓C的方程;(2)利用兩點距離公式、切線的性質(zhì)可得、,再應用三角形面積公式求三角形PMN的面積.【小問1詳解】由已知,可設圓心,且,從而有,解得.所以圓心,半徑.所以,圓C的方程為.【小問2詳解】連接PC,CM,CN,MN,由(1)知:圓心,半徑.所以.又PM,PN是圓C的切線,所以,,則,,所以,所以.19、(1)(2)【解析】(1)根據(jù)已知計算雙曲線的基本量,得雙曲線焦點坐標及漸近線方程,再用點到直線距離公式得解.(2)直線方程代入雙曲線方程,得到關于的一元二次方程,運用韋達定理弦長公式列方程得解.【小問1詳解】雙曲線離心率為,實軸長為2,,,解得,,,所求雙曲線C的方程為;∴雙曲線C的焦點坐標為,漸近線方程為,即為,∴雙曲線焦點到漸近線的距離為.【小問2詳解】設,,聯(lián)立,,,,,,解得20、(1)(2)證明見解析【解析】(1)根據(jù)已知條件列方程組,解方程組求得,從而求得橢圓的標準方程.(2)設出直線的方程并與橢圓方程聯(lián)立,由此求得,同理求得,從而化簡求得直線的斜率為定值.【小問1詳解】由題可知,解得,從而粚圓方程為.【小問2詳解】證明設直線的斜率為,則,,聯(lián)立直線與橢圓的方程,得,整理得,從而,于是,由題意得直線的斜率為,則,,同理可求得,于是即直線的斜率為定值.21、(1)證明見解析;(2)證明見解析.【解析】(1)連結、,交于點,連結,通過即可證明;(2)通過,

可證平面,即得,進而通過平面得,結合即證.詳解】證明:(1)連結、,交于點,連結,底面正方形,∴是中點,點是的中點,.平面,

平面,∴平面.(2),點是的中點,.底面是正方形,側棱底面,∴,

,且

,∴平面,∴,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論