版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南農(nóng)業(yè)大學(xué)附屬中學(xué)2024屆數(shù)學(xué)高二上期末預(yù)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.(2017新課標全國卷Ⅲ文科)已知橢圓C:的左、右頂點分別為A1,A2,且以線段A1A2為直徑的圓與直線相切,則C的離心率為A. B.C. D.2.拋物線的焦點到直線的距離()A. B.C.1 D.23.已知數(shù)列是等比數(shù)列,,數(shù)列是等差數(shù)列,,則的值是()A. B.C. D.4.在等差數(shù)列中,若,則()A.5 B.6C.7 D.85.如果,,那么直線不經(jīng)過的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知:,直線l:,M為直線l上的動點,過點M作的切線MA,MB,切點為A,B,則四邊形MACB面積的最小值為()A.1 B.2C. D.47.某班對期中成績進行分析,利用隨機數(shù)表法抽取樣本時,先將60個同學(xué)的成績按01,02,03,……,60進行編號,然后從隨機數(shù)表第9行第5列的數(shù)1開始向右讀,則選出的第6個個體是()(注:如下為隨機數(shù)表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.528.過點(1,0)且與直線x-2y-2=0平行的直線方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=09.饕餮(tāotiè)紋,青銅器上常見的花紋之一,盛行于商代至西周早期,最早出現(xiàn)在距今五千年前長江下游地區(qū)的良渚文化玉器上.有人將饕餮紋的一部分畫到了方格紙上,如圖所示,每個小方格的邊長為,有一點從點出發(fā)每次向右或向下跳一個單位長度,且向右或向下跳是等可能性的,那么它經(jīng)過次跳動后恰好是沿著饕餮紋的路線到達點的概率為()A. B.C. D.10.函數(shù),則的值為()A. B.C. D.11.已知雙曲線的離心率為,則的漸近線方程為A. B.C. D.12.已知是和的等比中項,則圓錐曲線的離心率為()A. B.或2C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.如圖,一個酒杯的內(nèi)壁的軸截面是拋物線的一部分,杯口寬cm,杯深8cm,稱為拋物線酒杯.①在杯口放一個表面積為的玻璃球,則球面上的點到杯底的最小距離為______cm;②在杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,則玻璃球的半徑的取值范圍為______(單位:cm)14.若與直線垂直,那么__________15.在等比數(shù)列中,已知,則__________16.雙曲線的左頂點為,虛軸的一個端點為,右焦點到直線的距離為,則雙曲線的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的圓心為,且圓經(jīng)過點(1)求圓的標準方程;(2)若圓:與圓恰有兩條公切線,求實數(shù)取值范圍18.(12分)如圖所示,在三棱柱中,,點在平面ABC上的射影為線段AC的中點D,側(cè)面是邊長為2的菱形(1)若△ABC是正三角形,求異面直線與BC所成角的余弦值;(2)當(dāng)直線與平面所成角的正弦值為時,求線段BD的長19.(12分)已知函數(shù)在處的切線方程為.(1)求的解析式;(2)求函數(shù)圖象上的點到直線的距離的最小值.20.(12分)在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且(1)求證:平面;(2)求平面與平面夾角的余弦值21.(12分)已知雙曲線,直線l與交于P、Q兩點(1)若點是雙曲線的一個焦點,求的漸近線方程;(2)若點P的坐標為,直線l的斜率等于1,且,求雙曲線的離心率22.(10分)已知拋物線的焦點到準線的距離為4,直線與拋物線交于兩點.(1)求此拋物線的方程;(2)若以為直徑的圓過原點O,求實數(shù)k的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】以線段為直徑的圓的圓心為坐標原點,半徑為,圓的方程為,直線與圓相切,所以圓心到直線的距離等于半徑,即,整理可得,即即,從而,則橢圓的離心率,故選A.【名師點睛】解決橢圓和雙曲線的離心率的求值及取值范圍問題,其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.2、B【解析】由拋物線可得焦點坐標,結(jié)合點到直線的距離公式,即可求解.【詳解】由拋物線可得焦點坐標為,根據(jù)點到直線的距離公式,可得,即拋物線的焦點到直線的距離為.故選:B.3、B【解析】根據(jù)等差數(shù)列和等比數(shù)列下標和的性質(zhì)即可求解.【詳解】為等比數(shù)列,,,,;為等差數(shù)列,,,,,∴.故選:B.4、B【解析】由得出.【詳解】由可得,故選:B5、A【解析】將直線化為,結(jié)合已知條件即可判斷不經(jīng)過的象限.【詳解】由題設(shè),直線可寫成,又,,∴,,故直線過二、三、四象限,不過第一象限.故選:A.6、B【解析】易知四邊形MACB的面積為,然后由最小,根據(jù)與直線l:垂直求解.【詳解】:化為標準方程為:,由切線長得:,四邊形MACB的面積為,若四邊形MACB的面積最小,則最小,此時與直線l:垂直,所以,所以四邊形MACB面積的最小值,故選:B7、D【解析】從指定位置起依次讀兩位數(shù)碼,超出編號的數(shù)刪除.【詳解】根據(jù)題意,從隨機數(shù)表第9行第5列的數(shù)1開始向右讀,依次選出的號碼數(shù)是:12,34,29,56,07,52;所以第6個個體是52.故選:D.8、A【解析】設(shè)出直線方程,利用待定系數(shù)法得到結(jié)果.【詳解】設(shè)與直線平行的直線方程為,將點代入直線方程可得,解得則所求直線方程為.故A正確【點睛】本題主要考查兩直線的平行問題,屬容易題.兩直線平行傾斜角相等,所以斜率相等或均不存在.所以與直線平行的直線方程可設(shè)為9、B【解析】本題首先可根據(jù)題意列出次跳動的所有基本事件,然后找出沿著饕餮紋的路線到達點的事件,最后根據(jù)古典概型的概率計算公式即可得出結(jié)果.【詳解】點從點出發(fā),每次向右或向下跳一個單位長度,次跳動的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿著饕餮紋的路線到達點的事件有:(下,下,右),故到達點的概率,故選:B.10、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B11、C【解析】,故,即,故漸近線方程為.【考點】本題考查雙曲線的基本性質(zhì),考查學(xué)生的化歸與轉(zhuǎn)化能力.12、B【解析】由等比中項的性質(zhì)可得,分別計算曲線的離心率.【詳解】由是和的等比中項,可得,當(dāng)時,曲線方程為,該曲線為焦點在軸上的橢圓,離心率,當(dāng)時,曲線方程為,該曲線為焦點在軸上的雙曲線,離心率,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據(jù)題意,,進而得,,故最小距離為;進而建立坐標系,得拋物線方程為,當(dāng)杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,此時設(shè)玻璃球軸截面所在圓的方程為,進而只需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,再根據(jù)幾何關(guān)系求解即可.【詳解】因為杯口放一個表面積為的玻璃球,所以球的半徑為,又因為杯口寬cm,所以如圖1所示,有,所以,所以,所以,又因為杯深8cm,即故最小距離為如圖1所示,建立直角坐標系,易知,設(shè)拋物線的方程為,所以將代入得,故拋物線方程為,當(dāng)杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,如圖2,設(shè)玻璃球軸截面所在圓的方程為,依題意,需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,即,則有恒成立,解得,可得.所以玻璃球的半徑的取值范圍為.故答案為:;【點睛】本題考查拋物線的應(yīng)用,考查數(shù)學(xué)建模能力,運算求解能力,是中檔題.本題第二問解題的關(guān)鍵在于設(shè)出球觸及酒杯底部的軸截面圓的方程,進而將問題轉(zhuǎn)化為拋物線上的點到圓心的距離大于等于半徑恒成立求解.14、【解析】由兩條直線垂直知,得15、32【解析】根據(jù)已知求出公比即可求出答案.【詳解】設(shè)等比數(shù)列的公比為,則,則,所以.故答案為:32.16、【解析】根據(jù)雙曲線左頂點和虛軸端點的定義,結(jié)合點到直線距離公式、雙曲線的離心率公式進行求解即可.【詳解】不妨設(shè)在縱軸的正半軸上,由雙曲線的標準方程可知:,右焦點的坐標為,直線的方程為:,因為右焦點到直線的距離為,所以有,即雙曲線的離心率為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定條件求出圓C的半徑,再直接寫出方程作答.(2)由給定條件可得圓C與圓O相交,由此列出不等式求解作答.【小問1詳解】依題意,圓C的半徑,所以圓的標準方程是:.【小問2詳解】圓:圓心,半徑為,因圓與圓恰有兩條公切線,則有圓O與圓C相交,即,而,因此有,解得,所以實數(shù)的取值范圍是.18、(1)(2)或【解析】(1)建立空間直角坐標系,利用向量法求得直線與所成角的余弦值.(2)結(jié)合直線與平面所成的角,利用向量法列方程,化簡求得的長.【小問1詳解】依題意點在平面ABC上的射影為線段AC的中點D,所以平面,,由于,所以,以為空間坐標原點建立如圖所示空間直角坐標系,,,當(dāng)是等邊三角形時,,.設(shè)直線與所成角為,則.【小問2詳解】設(shè),則,,設(shè)平面的法向量為,則,故可設(shè),設(shè)直線與平面所成角為,則,化簡的,解得或,也即或.19、(1);(2).【解析】(1)由題可得,然后利用導(dǎo)數(shù)的幾何意義即求;(2)由題可得切點到直線的距離最小,即得.【小問1詳解】∵函數(shù),∴的定義域為,,∴在處切線的斜率為,由切線方程可知切點為,而切點也在函數(shù)圖象上,解得,∴的解析式為;【小問2詳解】由于直線與直線平行,直線與函數(shù)在處相切,所以切點到直線的距離最小,最小值為,故函數(shù)圖象上的點到直線的距離的最小值為.20、(1)證明見解析(2)【解析】(1)先利用正方形和梯形的性質(zhì)證明線面平行,然后再根據(jù)線面平行證明面面平行即可(2)根據(jù)題意建立空間直角坐標系,寫出相關(guān)點的坐標和相關(guān)的向量,然后分別求出平面與平面的一個法向量,最后求出平面與平面夾角的余弦值【小問1詳解】四邊形是正方形,可得:又平面,平面則有:平面四邊形是梯形,可得:又平面,平面則有:平面又故平面平面【小問2詳解】依題意知兩兩垂直,故以為原點,所在的直線分別為軸、軸、軸,建立如圖所示的空間直角坐標系.則有:,,,可得:,,設(shè)平面的一個法向量,則有:取,可得:設(shè)平面的一個法向量,則有:取,可得:設(shè)平面與平面的夾角為,則故平面與平面夾角的余弦值為21、(1)(2)或【解析】(1)根據(jù)題意可得,又因為且,解得,可得雙曲線方程,進而可得的漸近線方程(2)設(shè)直線的方程為:,,,聯(lián)立直線與雙曲線方程,可得關(guān)于的一元二次方程,由韋達定理可得,,再由兩點之間距離公式得,解得,進而由可求出,即可求得離心率.【小問1詳解】∵點是雙曲線的一個焦點,∴,又∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農(nóng)貿(mào)場農(nóng)產(chǎn)品溯源系統(tǒng)開發(fā)合同3篇
- 2025版無人駕駛車輛測試場租賃合同范本4篇
- 二零二五版智慧家居系統(tǒng)定制開發(fā)合同范本及智能家居生態(tài)圈構(gòu)建4篇
- 二零二五年度旅游度假區(qū)內(nèi)部控制制度咨詢與旅游服務(wù)提升合同4篇
- 2025年綠色環(huán)保服裝定制生產(chǎn)合同范本3篇
- 二零二五年度體育賽事組織與管理聘用合同
- 2025年度泥工班組勞務(wù)承包施工合同范本
- 二零二五年度房地產(chǎn)代持權(quán)證登記合同范本4篇
- 2025年度個人知識產(chǎn)權(quán)許可欠款合同模板3篇
- 2025版門窗行業(yè)綠色制造與安裝合同4篇
- 二零二五隱名股東合作協(xié)議書及公司股權(quán)代持及回購協(xié)議
- 四川省成都市武侯區(qū)2023-2024學(xué)年九年級上學(xué)期期末考試化學(xué)試題
- 教育部《中小學(xué)校園食品安全和膳食經(jīng)費管理工作指引》知識培訓(xùn)
- 初一到初三英語單詞表2182個帶音標打印版
- 2024年秋季人教版七年級上冊生物全冊教學(xué)課件(2024年秋季新版教材)
- 環(huán)境衛(wèi)生學(xué)及消毒滅菌效果監(jiān)測
- 2023年11月英語二級筆譯真題及答案(筆譯實務(wù))
- 元明時期左江上思州黃姓土司問題研究
- 圍手術(shù)期應(yīng)急預(yù)案
- 中玻北方新材料有限責(zé)任公司太陽能光伏玻璃及l(fā)ow-e節(jié)能玻璃深加工項目申請立項環(huán)境影響評估報告書簡本
- 【橡膠工藝】-橡膠履帶規(guī)格
評論
0/150
提交評論