版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
浙江省百校2023-2024學(xué)年數(shù)學(xué)高二上期末統(tǒng)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若雙曲線的焦距為,則雙曲線的漸近線方程為()A. B.C. D.2.箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,設(shè)事件=“至少有一件次品”,則的對(duì)立事件為()A.至多兩件次品 B.至多一件次品C.沒(méi)有次品 D.至少一件次品3.函數(shù)的圖象大致為()A B.C D.4.在等差數(shù)列中,,則()A.6 B.3C.2 D.15.若直線的一個(gè)方向向量為,直線的一個(gè)方向向量為,則直線與所成的角為()A30° B.45°C.60° D.90°6.函數(shù)區(qū)間上有()A.極大值為27,極小值為-5 B.無(wú)極大值,極小值為-5C.極大值為27,無(wú)極小值 D.無(wú)極大值,無(wú)極小值7.“楊輝三角”是中國(guó)古代數(shù)學(xué)文化的瑰寶之一,最早在中國(guó)南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書中出現(xiàn).如圖所示的楊輝三角中,第8行,第3個(gè)數(shù)是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.568.已知函數(shù).若數(shù)列的前n項(xiàng)和為,且滿足,,則的最大值為()A.9 B.12C.20 D.9.已知命題,,則p的否定是()A. B.C. D.10.等差數(shù)列x,,,…的第四項(xiàng)為()A.5 B.6C.7 D.811.已知拋物線,,點(diǎn)在拋物線上,記點(diǎn)到直線的距離為,則的最小值是()A.5 B.6C.7 D.812.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動(dòng)圓M同時(shí)與圓C1及圓C2相外切,求動(dòng)圓圓心M的軌跡方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=1二、填空題:本題共4小題,每小題5分,共20分。13.如圖,某河流上有一座拋物線形的拱橋,已知橋的跨度米,高度米(即橋拱頂?shù)交诘闹本€的距離).由于河流上游降雨,導(dǎo)致河水從橋的基座處開(kāi)始上漲了1米,則此時(shí)橋洞中水面的寬度為_(kāi)_____米14.若點(diǎn)為圓上的一個(gè)動(dòng)點(diǎn),則點(diǎn)到直線距離的最大值為_(kāi)_______15.若直線與函數(shù)的圖象有三個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍是_________16.已知雙曲線中心在坐標(biāo)原點(diǎn),左右焦點(diǎn)分別為,漸近線分別為,過(guò)點(diǎn)且與垂直的直線分別交于兩點(diǎn),且,則雙曲線的離心率為_(kāi)_______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓C:的離心率為,點(diǎn)為橢圓C上一點(diǎn)(1)求橢圓C的方程;(2)若M,N是橢圓C上的兩個(gè)動(dòng)點(diǎn),且的角平分線總是垂直于y軸,求證:直線MN的斜率為定值18.(12分)如圖,四棱錐中,是邊長(zhǎng)為4的正三角形,為正方形,平面平面,、分別為、中點(diǎn).(1)證明:平面;(2)求直線EP與平面AEF所成角的正弦值.19.(12分)已知圓C經(jīng)過(guò)點(diǎn),,且它的圓心C在直線上.(1)求圓C的方程;(2)過(guò)點(diǎn)作圓C的兩條切線,切點(diǎn)分別為M,N,求三角形PMN的面積.20.(12分)若存在常數(shù),使得對(duì)任意,,均有,則稱為有界集合,同時(shí)稱為集合的上界.(1)設(shè),,試判斷A、B是否為有界集合,并說(shuō)明理由;(2)已知常數(shù),若函數(shù)為有界集合,求集合的上界最小值.21.(12分)某快餐配送平臺(tái)針對(duì)外賣員送餐準(zhǔn)點(diǎn)情況制定了如下的考核方案:每一單自接單后在規(guī)定時(shí)間內(nèi)送達(dá)、延遲5分鐘內(nèi)送達(dá)、延遲5至10分鐘送達(dá)、其他延遲情況,分別評(píng)定為四個(gè)等級(jí),各等級(jí)依次獎(jiǎng)勵(lì)3元、獎(jiǎng)勵(lì)0元、罰款3元、罰款6元.假定評(píng)定為等級(jí)的概率分別是.(1)若某外賣員接了一個(gè)訂單,求其不被罰款的概率;(2)若某外賣員接了兩個(gè)訂單,且兩個(gè)訂單互不影響,求這兩單獲得的獎(jiǎng)勵(lì)之和為3元的概率.22.(10分)在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)、的距離之和等于,設(shè)點(diǎn)的軌跡為,直線與交于、兩點(diǎn)(1)求曲線的方程;(2)若,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由焦距為可得,又,進(jìn)而可得,最后根據(jù)焦點(diǎn)在軸上的雙曲線的漸近線方程為即可求解.【詳解】解:因?yàn)殡p曲線的焦距為,所以,所以,解得,所以,所以雙曲線的漸近線方程為,即,故選:A.2、C【解析】利用對(duì)立事件的定義,分析即得解【詳解】箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,可能出現(xiàn):“兩件次品”,“一件次品,一件正品”,“兩件正品”三種情況根據(jù)對(duì)立事件的定義,事件=“至少有一件次品”其對(duì)立事件為:“兩件正品”,即”沒(méi)有次品“故選:C3、A【解析】利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合函數(shù)值確定正確選項(xiàng).【詳解】由,可得函數(shù)的減區(qū)間為,增區(qū)間為,當(dāng)時(shí),,可得選項(xiàng)為A故選:A4、B【解析】根據(jù)等差數(shù)列下標(biāo)性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槭堑炔顢?shù)列,所以,故選:B5、C【解析】直接由公式,計(jì)算兩直線的方向向量的夾角,進(jìn)而得出直線與所成角的大小【詳解】因?yàn)?,,所以,所以,所以直線與所成角的大小為故選:C6、B【解析】求出得出的單調(diào)區(qū)間,從而可得答案.【詳解】當(dāng)時(shí),,單調(diào)遞減.當(dāng)時(shí),,單調(diào)遞增.所以當(dāng)時(shí),取得極小值,極小值為,無(wú)極大值.故選:B7、B【解析】由題意知第8行的數(shù)就是二項(xiàng)式的展開(kāi)式中各項(xiàng)的二項(xiàng)式系數(shù),可得第8行,第3個(gè)數(shù)是為,即可求解【詳解】解:由題意知第8行的數(shù)就是二項(xiàng)式的展開(kāi)式中各項(xiàng)的二項(xiàng)式系數(shù),故第8行,第3個(gè)數(shù)是為故選:B8、C【解析】先得到及遞推公式,要想最大,則分兩種情況,負(fù)數(shù)且最小或?yàn)檎龜?shù)且最大,進(jìn)而求出最大值.【詳解】①,當(dāng)時(shí),,當(dāng)時(shí),②,所以①-②得:,整理得:,所以,或,當(dāng)是公差為2的等差數(shù)列,且時(shí),最小,最大,此時(shí),所以,此時(shí);當(dāng)且是公差為2的等差數(shù)列時(shí),最大,最大,此時(shí),所以,此時(shí)綜上:的最大值為20故選:C【點(diǎn)睛】方法點(diǎn)睛:數(shù)列相關(guān)的最值求解,要結(jié)合題干條件,使用不等式放縮,函數(shù)單調(diào)性或?qū)Ш瘮?shù)等進(jìn)行求解.9、A【解析】直接根據(jù)全稱命題的否定寫出結(jié)論.【詳解】命題,為全稱命題,故p的否定是:.故選:A【點(diǎn)睛】全稱量詞命題的否定是特稱(存在)量詞命題,特稱(存在)量詞命題的否定是全稱量詞命題10、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項(xiàng).【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項(xiàng)為-1+(4-1)×2=5.故選:A.11、D【解析】先求出拋物線的焦點(diǎn)和準(zhǔn)線,利用拋物線的定義將轉(zhuǎn)化為的距離,即可求解.【詳解】由已知得拋物線的焦點(diǎn)為,準(zhǔn)線方程為,設(shè)點(diǎn)到準(zhǔn)線的距離為,則,則由拋物線的定義可知∵,當(dāng)點(diǎn)、、三點(diǎn)共線時(shí)等號(hào)成立,∴,故選:.12、A【解析】根據(jù)雙曲線定義求解【詳解】,則根據(jù)雙曲線定義知的軌跡為的左半支故選:A第II卷(非選擇題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以橋的頂點(diǎn)為坐標(biāo)原點(diǎn),水平方向所在直線為x軸建立直角坐標(biāo)系,則根據(jù)點(diǎn)在拋物線上,可得拋物線的方程,設(shè)水面與橋的交點(diǎn)坐標(biāo)為,求出,進(jìn)而可得水面的寬度.【詳解】以橋的頂點(diǎn)為坐標(biāo)原點(diǎn),水平方向所在直線為x軸建立直角坐標(biāo)系,則拋物線的方程為,因?yàn)辄c(diǎn)在拋物線上,所以,即故拋物線的方程為,設(shè)河水上漲1米后,水面與橋的交點(diǎn)坐標(biāo)為,則,得,所以此時(shí)橋洞中水面的寬度為米故答案為:14、7【解析】根據(jù)給定條件求出圓C的圓心C到直線l的距離即可計(jì)算作答.【詳解】圓的圓心,半徑,點(diǎn)C到直線的距離,所以圓C上點(diǎn)P到直線l距離的最大值為.故答案為:715、【解析】求導(dǎo)函數(shù),分析導(dǎo)函數(shù)的符號(hào),得出原函數(shù)的單調(diào)性和極值,由此可求得答案.【詳解】解:因?yàn)楹瘮?shù),則,所以當(dāng)或時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增,所以當(dāng)時(shí),函數(shù)取得極小值,當(dāng)時(shí),函數(shù)取得極大值,因?yàn)橹本€與函數(shù)的圖象有三個(gè)交點(diǎn),所以實(shí)數(shù)a的取值范圍是,故答案為:.16、【解析】判斷出三角形的形狀,求得點(diǎn)坐標(biāo),由此列方程求得,進(jìn)而求得雙曲線的離心率.【詳解】依題意設(shè)雙曲線方程為,雙曲線的漸近線方程為,右焦點(diǎn),不妨設(shè).由于,所以是線段的中點(diǎn),由于,所以是線段的垂直平均分,所以三角形是等腰三角形,則.直線的斜率為,則直線的斜率為,所以直線的方程為,由解得,則,即,化簡(jiǎn)得,所以雙曲線的離心率為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)證明見(jiàn)解析.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)角平分線的性質(zhì),結(jié)合一元二次方程根與系數(shù)關(guān)系、斜率公式進(jìn)行求解即可.【小問(wèn)1詳解】橢圓的離心率,又,∴∵橢圓C:經(jīng)過(guò)點(diǎn),解得,∴橢圓C的方程為;【小問(wèn)2詳解】∵∠MPN的角平分線總垂直于y軸,∴MP與NP所在直線關(guān)于直線對(duì)稱.設(shè)直線MP的斜率為k,則直線NP的斜率為∴設(shè)直線MP的方程為,直線NP的方程為設(shè)點(diǎn),由消去y,得∵點(diǎn)在橢圓C上,則有,即同理可得∴,又∴直線MN的斜率為【點(diǎn)睛】關(guān)鍵點(diǎn)睛:由∠MPN的角平分線總垂直于y軸,得到MP與NP所在直線關(guān)于直線對(duì)稱是解題的關(guān)鍵.18、(1)見(jiàn)解析(2)【解析】(1)連接,證明,即可證明平面;(2)取的中點(diǎn),連接,由平面平面,得平面,建立如圖所示空間直角坐標(biāo)系,利用向量法即可求得答案.【小問(wèn)1詳解】證明:連接,是正方形,是的中點(diǎn),是的中點(diǎn),是的中點(diǎn),,平面,平面,平面;【小問(wèn)2詳解】取的中點(diǎn),連接,則,因?yàn)槭沁呴L(zhǎng)為4的正三角形,所以,因?yàn)槠矫嫫矫妫移矫嫫矫?,所以平面,建立如圖所示空間直角坐標(biāo)系,則,則,設(shè)平面的法向量,則有,可取,則,所以直線EP與平面AEF所成角的正弦值為.19、(1);(2).【解析】(1)由題設(shè)知,設(shè)圓心,應(yīng)用兩點(diǎn)距離公式列方程求參數(shù)a,進(jìn)而確定圓心坐標(biāo)、半徑,寫出圓C的方程;(2)利用兩點(diǎn)距離公式、切線的性質(zhì)可得、,再應(yīng)用三角形面積公式求三角形PMN的面積.【小問(wèn)1詳解】由已知,可設(shè)圓心,且,從而有,解得.所以圓心,半徑.所以,圓C的方程為.【小問(wèn)2詳解】連接PC,CM,CN,MN,由(1)知:圓心,半徑.所以.又PM,PN是圓C的切線,所以,,則,,所以,所以.20、(1)A不是有界集合,B是有界集合,理由見(jiàn)解析(2)【解析】(1)解不等式求得集合A;由,根據(jù)指數(shù)函數(shù)的性質(zhì)求得集合B,由此可得結(jié)論;(2)由函數(shù),得出函數(shù)單調(diào)遞減,即有,分和兩種情況討論,求得集合的上界,再由集合的上界函數(shù)的單調(diào)性可求得集合的上界的最小值.【小問(wèn)1詳解】解:由得,即,,對(duì)任意一個(gè),都有一個(gè),故不是有界集合;,,,,是有界集合,上界為1;【小問(wèn)2詳解】解:,因?yàn)?,所以函?shù)單調(diào)遞減,,因?yàn)楹瘮?shù)為有界集合,所以分兩種情況討論:當(dāng),即時(shí),集合的上界,當(dāng)時(shí),不等式為;當(dāng)時(shí),不等式為;當(dāng)時(shí),不等式為,即時(shí),集合的上界,當(dāng),即時(shí),集合的上界,同上解不等式得的解為,即時(shí),集合的上界,綜上得時(shí),集合的上界;時(shí),集合的上界.時(shí),集合的上界是一個(gè)減函數(shù),所以此時(shí),時(shí),集合的上界是增函數(shù),所以,所以集合的上界最小值為;21、(1)(2)【解析】(1)利用互斥事件的概率公式,即可求解;(2)由條件可知兩單共獲得的獎(jiǎng)勵(lì)為3元即事件,同樣利用互斥事件和的概率,即可求解.【小問(wèn)1詳解】設(shè)事件分別表示“被評(píng)為等級(jí)”,由題意,事件兩兩互斥,所以,又“不被罰款”,所以.因此“不被罰款”概率為;【小問(wèn)2詳解】設(shè)事件表示“第單被評(píng)為等級(jí)”,,則“兩單共獲得的獎(jiǎng)勵(lì)為3元”即事件,且事件彼此互斥,又,所以.22、(1);(2).【解析】
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人藝術(shù)品抵押擔(dān)保合同書4篇
- 二零二五版智能家居門窗安裝與維護(hù)服務(wù)合同3篇
- 2025年綠色建材水泥采購(gòu)與施工總承包合同3篇
- 2025年個(gè)人股東對(duì)外股權(quán)轉(zhuǎn)讓協(xié)議范本與股權(quán)變更登記3篇
- 開(kāi)發(fā)需求委托合同(2篇)
- 建筑材料采購(gòu)分包合同(2篇)
- 2024年注冊(cè)消防工程師題庫(kù)參考答案
- 保險(xiǎn)產(chǎn)品創(chuàng)新路演模板
- 二零二五年度汽車租賃擔(dān)保公司合同車輛作為抵押的擔(dān)保公司服務(wù)協(xié)議4篇
- 二零二五版特色小吃店轉(zhuǎn)讓與加盟協(xié)議4篇
- 2025水利云播五大員考試題庫(kù)(含答案)
- 中藥飲片驗(yàn)收培訓(xùn)
- DB34T 1831-2013 油菜收獲與秸稈粉碎機(jī)械化聯(lián)合作業(yè)技術(shù)規(guī)范
- 殘疾軍人新退休政策
- 白酒代理合同范本
- 稅前工資反算表模板
- 2019級(jí)水電站動(dòng)力設(shè)備專業(yè)三年制人才培養(yǎng)方案
- 肝素誘導(dǎo)的血小板減少癥培訓(xùn)課件
- 抖音認(rèn)證承諾函
- 高等數(shù)學(xué)(第二版)
- 四合一體系基礎(chǔ)知識(shí)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論