




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
重慶八中2023年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若圓與直線相切,則實(shí)數(shù)的值為()A. B.或3C. D.或2.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計(jì)算出半音比例,為這個(gè)理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個(gè)純八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它的前一個(gè)單音的頻率的比都等于.若第一個(gè)單音的頻率為f,則第八個(gè)單音的頻率為A. B.C. D.3.設(shè)是函數(shù)的導(dǎo)函數(shù),的圖象如圖所示,則的圖象最有可能的是()A. B.C. D.4.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A.5 B.10C.4 D.5.函數(shù),的值域?yàn)椋ǎ〢. B.C. D.6.對任意實(shí)數(shù)k,直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.與k有關(guān)7.已知空間向量,,且與互相垂直,則k的值是()A.1 B.C. D.8.已知在等比數(shù)列中,,,則()A.9或 B.9C.27或 D.279.已知a、b是兩條不同的直線,α、β、γ是三個(gè)不同的平面,則下列命題正確的是()A.若a∥α,a∥b,則b∥α B.若a∥α,a∥β,則α∥βC.若α⊥γ,β⊥γ,則α∥β D.若a⊥α,b⊥α,則a∥b10.意大利數(shù)學(xué)家斐波那契,以兔子繁殖為例,引入“兔子數(shù)列”,,,,,,,,…,在實(shí)際生活中很多花朵的瓣數(shù)恰是斐波那契數(shù)列中的數(shù),斐波那契數(shù)列在物理化學(xué)等領(lǐng)域也有著廣泛的應(yīng)用.已知斐波那契數(shù)列滿足:,,,若,則等于()A. B.C. D.11.已知點(diǎn)是橢圓上一點(diǎn),點(diǎn),則的最小值為A. B.C. D.12.如圖,在棱長為的正方體中,為線段的中點(diǎn),為線段的中點(diǎn),則直線到直線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若有兩個(gè)零點(diǎn),則的范圍是______14.已知曲線與曲線有相同的切線,則________15.已知函數(shù)是上的奇函數(shù),,對,成立,則的解集為_________16.已知一個(gè)樣本數(shù)據(jù)為3,3,5,5,5,7,7,現(xiàn)在新加入一個(gè)3,一個(gè)5,一個(gè)7得到一個(gè)新樣本,則與原樣本數(shù)據(jù)相比,新樣本數(shù)據(jù)平均數(shù)______,方差______.(“變大”、“變小”、“不變”)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,ABCD是邊長為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)證明:AC∥平面BEF;(2)求點(diǎn)C到平面BEF的距離18.(12分)已知橢圓的離心率為,橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,過點(diǎn)的直線與橢圓相交于、兩點(diǎn).(1)求橢圓的方程;(2)若以為直徑的圓過坐標(biāo)原點(diǎn),求的值.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)時(shí),求函數(shù)在內(nèi)的零點(diǎn)個(gè)數(shù).20.(12分)已知集合,,.(1)求;(2)若“”是“”的必要不充分條件,求實(shí)數(shù)a的取值范圍.21.(12分)在①,②這兩個(gè)條件中任選一個(gè),補(bǔ)充在下面的問題中,并作答.設(shè)數(shù)列的前項(xiàng)和為,且__________.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.22.(10分)在正方體中,,,分別是,,的中點(diǎn).(1)證明:平面平面;(2)求直線與所成角的正切值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用圓心到直線的距離等于半徑可得答案.【詳解】若圓與直線相切,則到直線的距離為,所以,解得,或.故選:D.2、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個(gè)單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因?yàn)槊恳粋€(gè)單音與前一個(gè)單音頻率比為,所以,又,則故選D.點(diǎn)睛:此題考查等比數(shù)列的實(shí)際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列等比數(shù)列;(2)等比中項(xiàng)公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.3、C【解析】利用導(dǎo)函數(shù)的圖象,判斷導(dǎo)函數(shù)的符號,得到函數(shù)的單調(diào)性以及函數(shù)的極值點(diǎn),然后判斷選項(xiàng)即可【詳解】解:由題意可知:和時(shí),,函數(shù)是增函數(shù),時(shí),,函數(shù)是減函數(shù);是函數(shù)的極大值點(diǎn),是函數(shù)的極小值點(diǎn);所以函數(shù)的圖象只能是故選:C4、A【解析】利用等比數(shù)列的性質(zhì)及對數(shù)的運(yùn)算性質(zhì)求解.【詳解】由題有,則=5.故選:A5、D【解析】求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)在函數(shù)最值上的應(yīng)用,即可求出結(jié)果.【詳解】因?yàn)?,所以,令,又,所以或;所以?dāng)時(shí),;當(dāng)時(shí),;所以在單調(diào)遞增,在上單調(diào)遞減;所以;又,,所以;所以函數(shù)的值域?yàn)?故選:D.6、A【解析】判斷直線恒過定點(diǎn),可知定點(diǎn)在圓內(nèi),即可判斷直線與圓的位置關(guān)系.【詳解】由可知,即該圓的圓心坐標(biāo)為,半徑為,由可知,則該直線恒過定點(diǎn),將點(diǎn)代入圓的方程可得,則點(diǎn)在圓內(nèi),則直線與圓的位置關(guān)系為相交.故選:.7、D【解析】由=0可求解【詳解】由題意,故選:D8、B【解析】根據(jù)等比數(shù)列的性質(zhì)可求.【詳解】因?yàn)闉榈缺葦?shù)列,設(shè)公比為,則,解得,又,所以.故選:B.9、D【解析】根據(jù)空間線、面的位置關(guān)系有關(guān)定理,對四個(gè)選項(xiàng)逐一分析排除,由此得出正確選項(xiàng).【詳解】對于A選項(xiàng),直線有可能平面內(nèi),故A選項(xiàng)錯(cuò)誤.對于B選項(xiàng),兩個(gè)平面有可能相交,平行于它們的交線,故B選項(xiàng)錯(cuò)誤.對于C選項(xiàng),可能相交,故C選項(xiàng)錯(cuò)誤.根據(jù)線面垂直的性質(zhì)定理可知D選項(xiàng)正確.故選:D.10、A【解析】利用可化簡得,由此可得.【詳解】由得:,,即.故選:A.11、D【解析】設(shè),則,.所以當(dāng)時(shí),的最小值為.故選D.12、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉(zhuǎn)化成點(diǎn)到直線的距離,結(jié)合余弦定理即同角三角函數(shù)基本關(guān)系,求得,因此可得,進(jìn)而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因?yàn)椋謩e為,的中點(diǎn),因?yàn)椋?,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因?yàn)?,所以是銳角,所以,在直角三角形中,,故直線到直線的距離為;故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導(dǎo)數(shù)求出函數(shù)的最小值,結(jié)合函數(shù)的圖象列式可求出結(jié)果.【詳解】,當(dāng)時(shí),,在上為增函數(shù),最多只有一個(gè)零點(diǎn),不符合題意;當(dāng)時(shí),令,得,令,得,所以在上為減函數(shù),在上為增函數(shù),所以在時(shí)取得極小值為,也是最小值,因?yàn)楫?dāng)趨近于正負(fù)無窮時(shí),都是趨近于正無窮,所以要使有兩個(gè)零點(diǎn),只要,即就可以了.所以的范圍是故答案為:.14、0【解析】設(shè)切點(diǎn)分別為,.利用導(dǎo)數(shù)的幾何意義可得,則.由,,計(jì)算可得,進(jìn)而求得點(diǎn)坐標(biāo)代入方程即可求得結(jié)果.【詳解】設(shè)切點(diǎn)分別為,由題意可得,則,即因?yàn)?,,所以,即,解得,所以,則,解得故答案為:015、【解析】根據(jù)題意可以設(shè),求其導(dǎo)數(shù)可知在上的單調(diào)性,由是上的奇函數(shù),可知的奇偶性,進(jìn)而可知在上的單調(diào)性,由可知的零點(diǎn),最后分類討論即可.【詳解】設(shè),則對,,則在上為單調(diào)遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調(diào)遞減函數(shù),又∵,∴,由已知得,所以當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;若,則;若,則或,解得或或;則的解集為.故答案為:.16、①.不變②.變大【解析】通過計(jì)算平均數(shù)和方差來確定正確答案.【詳解】原樣本平均數(shù)為,原樣本方差為,新樣本平均數(shù)為,新樣本方差為.所以平均數(shù)不變,方差變大.故答案為:不變;變大三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,進(jìn)而求出平面BEF的法向量,然后證明線面平行;(2)算出在向量方向上的投影,進(jìn)而求得答案.【小問1詳解】因?yàn)镈E⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因?yàn)锳BCD是正方形,所以DA⊥DC.以D為坐標(biāo)原點(diǎn),所在方向分別為軸的正方向建立空間直角坐標(biāo)系,則A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(xiàn)(2,0,1),所以,,設(shè)平面BEF的法向量,因?yàn)?,所以?x-2y+2z=0,-2y+z=0,令y=1,則=(1,1,2),又因?yàn)椋?-2,2,0),所以,即,而平面BEF,所以AC∥平面BEF.【小問2詳解】設(shè)點(diǎn)C到平面BEF的距離為d,而,所以,所以點(diǎn)C到平面BEF的距離為18、(1);(2)【解析】(1)由離心率得到,由橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,得到,進(jìn)而可求出結(jié)果;(2)先由題意,得直線的斜率存在,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,設(shè),根據(jù)韋達(dá)定理,得到,,再由以為直徑的圓過坐標(biāo)原點(diǎn),得到,進(jìn)而可求出結(jié)果.詳解】(1)由題意知,∴,即,又雙曲線的焦點(diǎn)坐標(biāo)為,橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,所以,∴,故橢圓的方程為.(2)解:由題意知直線的斜率存在,設(shè)直線的方程為由得:由得:設(shè),則,,∴因?yàn)橐詾橹睆降膱A過坐標(biāo)原點(diǎn),所以,.滿足條件故.【點(diǎn)睛】本題主要考查橢圓的方程,以及橢圓的應(yīng)用,熟記橢圓的標(biāo)準(zhǔn)方程,以及橢圓的簡單性質(zhì)即可,解決此類問題時(shí),通常需要聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理、判別式等求解,屬于??碱}型.19、(1)當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.(2)0.【解析】(1)求得,對參數(shù)分類討論,即可由每種情況下的正負(fù)確定函數(shù)的單調(diào)性;(2)根據(jù)題意求得,利用進(jìn)行放縮,只需證即,再利用導(dǎo)數(shù)通過證明從而得到恒成立,則問題得解.【小問1詳解】以為,其定義域?yàn)?,又,故?dāng)時(shí),,在單調(diào)遞增;當(dāng)時(shí),令,可得,且令,解得,令,解得,故在單調(diào)遞增,在單調(diào)遞減.綜上所述:當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.【小問2詳解】因?yàn)?,故可得,則,;下證恒成立,令,則,故在單調(diào)遞減,又當(dāng)時(shí),,故在恒成立,即;因?yàn)?,故,令,下證在恒成立,要證恒成立,即證,又,故即證,令,則,令,解得,此時(shí)該函數(shù)單調(diào)遞增,令,解得,此時(shí)該函數(shù)單調(diào)遞減,又當(dāng)時(shí),,也即;令,則,令,解得,此時(shí)該函數(shù)單調(diào)遞減,令,解得,此時(shí)該函數(shù)單調(diào)遞增,又當(dāng)時(shí),,也即;又,故恒成立,則在恒成立,又,故當(dāng)時(shí),恒成立,則在上的零點(diǎn)個(gè)數(shù)是.【點(diǎn)睛】本題考察利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,以及函數(shù)零點(diǎn)問題的處理;本題第二問處理的關(guān)鍵是通過分離參數(shù)和構(gòu)造函數(shù),證明恒成立,屬綜合困難題.20、(1).(2).【解析】分析:(1)先求出A,B集合的解集,A集合求定義,B集合解不等式即可,然后由交集定義即可得結(jié)論;(2)若“”是“”的必要不充分條件,說明且,然后根據(jù)集合關(guān)系求解.詳解:(1),.則(2),因?yàn)椤啊笔恰啊钡谋匾怀浞謼l件,所以且.由,得,解得.經(jīng)檢驗(yàn),當(dāng)時(shí),成立,故實(shí)數(shù)的取值范圍是.點(diǎn)睛:考查定義域,解不等式,交集的定義以及必要不充分條件,正確求解集合,縷清集合間的基本關(guān)系是解題關(guān)鍵,屬于基礎(chǔ)題.21、(1)答案不唯一,具體見解析(2)答案不唯一,具體見解析【解析】(1)若選①:根據(jù),利用數(shù)列通項(xiàng)與前n項(xiàng)和的關(guān)系求解;若選②:構(gòu)造利用等比數(shù)列的定義求解;(2)根據(jù)(1)得到,再利用錯(cuò)位相減法求解.【小問1詳解】解:若選①:,當(dāng)時(shí),,當(dāng)時(shí),滿足上式,故若選②:易得于是數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共政策對青少年成長的支持試題及答案
- 跨國經(jīng)驗(yàn)對公共政策局勢的啟示試題及答案
- 項(xiàng)目管理中的成果與評估試題及答案
- 網(wǎng)絡(luò)工程師考試真題深度解析試題及答案
- 公共政策分析中的定量研究方法運(yùn)用試題及答案
- 西方政治制度中的社會公平試題及答案
- 政策分析的基本工具與方法試題及答案
- 機(jī)電工程考試全智攻略與試題及答案
- 機(jī)電工程綜合考試模擬題試題及答案2025
- 軟件設(shè)計(jì)師考試分析能力試題及答案
- 基于《山海經(jīng)》神祇形象的青少年解壓文具設(shè)計(jì)研究
- 教育與美好人生知到智慧樹章節(jié)測試課后答案2024年秋鄭州師范學(xué)院
- DB15T 3727-2024溫拌再生瀝青混合料超薄磨耗層碳排放核算技術(shù)規(guī)程
- 2025年新高考?xì)v史預(yù)測模擬試卷黑吉遼蒙卷(含答案解析)
- 傳染病疫情報(bào)告制度及報(bào)告流程
- DBJ50-T -212-2015 機(jī)制排煙氣道系統(tǒng)應(yīng)用技術(shù)規(guī)程
- 世界讀書日主題班會模板5
- 水庫建設(shè)投資估算與資金籌措
- 金屬雕花板保溫施工方案
- 涉密計(jì)算機(jī)保密培訓(xùn)
- T-GXAS 767-2024 尿液中汞的測定 氫化物發(fā)生原子熒光法
評論
0/150
提交評論