版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022學(xué)年第一學(xué)期溫州市高二期末教學(xué)質(zhì)量統(tǒng)一檢測(cè)數(shù)學(xué)試題(A卷)本試卷分選擇題和非選擇題兩部分,共4頁(yè),滿分150分,考試時(shí)間120分鐘.選擇題部分一、選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知SKIPIF1<0是直線的一個(gè)方向向量,則該直線的傾斜角為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)直線的方向向量求出直線的斜率,即可得答案.【詳解】因?yàn)镾KIPIF1<0是直線的一個(gè)方向向量,故直線的斜率為SKIPIF1<0,設(shè)直線的傾斜角為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故選:D2.已知空間的三個(gè)不共面的單位向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,對(duì)于空間的任意一個(gè)向量SKIPIF1<0,()A.將向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平移到同一起點(diǎn),則它們的終點(diǎn)在同一個(gè)單位圓上B.總存在實(shí)數(shù)x,y,使得SKIPIF1<0C.總存在實(shí)數(shù)x,y,z,使得SKIPIF1<0D.總存在實(shí)數(shù)x,y,z,使得SKIPIF1<0【答案】D【解析】【分析】根據(jù)空間向量的基底與共面向量充要條件逐項(xiàng)判斷即可.【詳解】解:對(duì)于A,當(dāng)空間的三個(gè)不共面的單位向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0作為空間直角坐標(biāo)系的標(biāo)準(zhǔn)正交基底時(shí),向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平移到同一起點(diǎn)即坐標(biāo)原點(diǎn),此時(shí)它們的終點(diǎn)形成邊長(zhǎng)為SKIPIF1<0的正三角形,其外接圓半徑SKIPIF1<0滿足SKIPIF1<0,即SKIPIF1<0,不是單位圓,故A不正確;對(duì)于B,由三個(gè)向量共面充要條件可知,當(dāng)向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共面時(shí),總存在實(shí)數(shù)x,y,使得SKIPIF1<0,但向量SKIPIF1<0是空間的任意一個(gè)向量,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0可以不共面,故B錯(cuò)誤;對(duì)于C,由于向量SKIPIF1<0,則向量SKIPIF1<0是空間中的一組共面向量,不能作為空間的基底向量,所以當(dāng)SKIPIF1<0不與SKIPIF1<0,SKIPIF1<0共面時(shí),則找不到實(shí)數(shù)x,y,z,使得SKIPIF1<0成立,故C不正確;對(duì)于D,已知空間的三個(gè)不共面的單位向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則向量SKIPIF1<0不共面,所以可以作為空間向量的一組基底,則總存在實(shí)數(shù)x,y,z,使得SKIPIF1<0,故D正確.故選:D.3.已知函數(shù)SKIPIF1<0在SKIPIF1<0的附近可導(dǎo),且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0處的切線方程為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】由題意可知斜率,代入點(diǎn)斜式即可求解.【詳解】由題知,SKIPIF1<0SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0處的切線斜率為:SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,SKIPIF1<0切線過(guò)點(diǎn)SKIPIF1<0,代入點(diǎn)斜式有:SKIPIF1<0,即:SKIPIF1<0.故選:A.4.已知橢圓SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,且c是a,b的等比中項(xiàng),則在橢圓上使SKIPIF1<0的點(diǎn)P共有()A.0個(gè) B.2個(gè) C.4個(gè) D.8個(gè)【答案】C【解析】【分析】當(dāng)SKIPIF1<0為橢圓短軸的頂點(diǎn)時(shí),SKIPIF1<0,從而得出滿足條件的點(diǎn)P個(gè)數(shù).【詳解】因?yàn)閏是a,b的等比中項(xiàng),所以SKIPIF1<0,當(dāng)SKIPIF1<0為橢圓短軸的頂點(diǎn)時(shí),SKIPIF1<0最大,此時(shí)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,因此在第一象限內(nèi)存在一點(diǎn)SKIPIF1<0滿足SKIPIF1<0,結(jié)合對(duì)稱性可知,在橢圓上使SKIPIF1<0的點(diǎn)P共有4個(gè).故選:C5.已知SKIPIF1<0是公差不為0的等差數(shù)列,SKIPIF1<0是其前SKIPIF1<0項(xiàng)和,則“對(duì)于任意SKIPIF1<0,都有SKIPIF1<0”是“SKIPIF1<0的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件【答案】A【解析】【分析】利用等差數(shù)列的前SKIPIF1<0項(xiàng)和公式和充分性、必要性的概念求解即可.【詳解】因?yàn)閿?shù)列SKIPIF1<0是公差不為0的等差數(shù)列,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0沒(méi)有最大值,所以由對(duì)于任意SKIPIF1<0,都有SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,充分性成立;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以必要性不成立,故“對(duì)于任意SKIPIF1<0,都有SKIPIF1<0”是“SKIPIF1<0的充分不必要條件,故選:A6.已知橢圓SKIPIF1<0:SKIPIF1<0,橢圓SKIPIF1<0與橢圓SKIPIF1<0的離心率相等,并且橢圓SKIPIF1<0的短軸端點(diǎn)就是橢圓SKIPIF1<0的長(zhǎng)軸端點(diǎn),據(jù)此類推:對(duì)任意的SKIPIF1<0且SKIPIF1<0,橢圓SKIPIF1<0與橢圓SKIPIF1<0的離心率相等,并且橢圓SKIPIF1<0的短軸端點(diǎn)就是橢圓SKIPIF1<0的長(zhǎng)軸端點(diǎn),由此得到一個(gè)橢圓列:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則橢圓SKIPIF1<0的焦距等于()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】確定橢圓的離心率,根據(jù)橢圓SKIPIF1<0的短軸端點(diǎn)就是橢圓SKIPIF1<0的長(zhǎng)軸端點(diǎn),可得SKIPIF1<0,結(jié)合SKIPIF1<0可推出SKIPIF1<0為首項(xiàng)為4,公比為SKIPIF1<0的等比數(shù)列,即可求得SKIPIF1<0,進(jìn)而利用SKIPIF1<0即可求得答案.【詳解】由題意可設(shè)橢圓SKIPIF1<0的長(zhǎng)半軸為SKIPIF1<0,短半軸為SKIPIF1<0,焦半距為SKIPIF1<0,對(duì)于橢圓SKIPIF1<0:SKIPIF1<0,有SKIPIF1<0,則由題意可知所有橢圓的離心率都為SKIPIF1<0,由于橢圓SKIPIF1<0的短軸端點(diǎn)就是橢圓SKIPIF1<0的長(zhǎng)軸端點(diǎn),故SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0為首項(xiàng)為4,公比為SKIPIF1<0的等比數(shù)列,故SKIPIF1<0,所以SKIPIF1<0,故橢圓SKIPIF1<0的焦距等于SKIPIF1<0,故選:B7.正三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,O為BC的中點(diǎn),M是棱SKIPIF1<0上一動(dòng)點(diǎn),過(guò)O作SKIPIF1<0于點(diǎn)N,則線段MN長(zhǎng)度的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)正三棱柱建立空間直角坐標(biāo)系,設(shè)動(dòng)點(diǎn)坐標(biāo),結(jié)合線線關(guān)系求線段MN的表達(dá)式,利用函數(shù)求最值即可.【詳解】解:因?yàn)檎庵鵖KIPIF1<0中,O為BC的中點(diǎn),取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,如圖,以SKIPIF1<0為原點(diǎn),SKIPIF1<0為SKIPIF1<0軸建立空間直角坐標(biāo)系,則SKIPIF1<0,因?yàn)镸是棱SKIPIF1<0上一動(dòng)點(diǎn),設(shè)SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以在直角三角形SKIPIF1<0中可得:SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,于是令SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即線段MN長(zhǎng)度的最小值為SKIPIF1<0.故選:B.8.已知SKIPIF1<0為不相等的正實(shí)數(shù),則下列命題為真的是()A.若SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0【答案】B【解析】【分析】構(gòu)造SKIPIF1<0,求導(dǎo)判斷單調(diào)性,進(jìn)而求出值域可得SKIPIF1<0,對(duì)SKIPIF1<0進(jìn)行放縮后解不等式,即可得選項(xiàng)A的正誤,在SKIPIF1<0中,取SKIPIF1<0代替SKIPIF1<0,則取等條件為SKIPIF1<0,即SKIPIF1<0,即可得SKIPIF1<0,對(duì)SKIPIF1<0進(jìn)行放縮,解出不等式,即可判斷選項(xiàng)B的正誤,構(gòu)造SKIPIF1<0,求導(dǎo)可得其單調(diào)性,進(jìn)而得SKIPIF1<0,但是SKIPIF1<0與1的大小關(guān)系不確定,所以SKIPIF1<0的大小關(guān)系不能確定,將SKIPIF1<0放縮為SKIPIF1<0,即SKIPIF1<0因?yàn)镾KIPIF1<0正負(fù)大小不確定,所以SKIPIF1<0大小不確定,即SKIPIF1<0的大小關(guān)系不能確定.【詳解】解:由題知SKIPIF1<0為不相等的正實(shí)數(shù),構(gòu)造SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故選項(xiàng)A錯(cuò)誤;由于SKIPIF1<0,取SKIPIF1<0代替SKIPIF1<0,則有:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí)等式成立,所以SKIPIF1<0,SKIPIF1<0所以解得SKIPIF1<0,若SKIPIF1<0可得SKIPIF1<0,此時(shí)SKIPIF1<0不成立,故取等條件不滿足,故SKIPIF1<0,所以選項(xiàng)B正確;構(gòu)造SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,因?yàn)镾KIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0與1的大小關(guān)系不確定,所以SKIPIF1<0的大小關(guān)系不能確定,故選項(xiàng)C錯(cuò)誤,因?yàn)镾KIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),等式不成立,即可化為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0成立,當(dāng)SKIPIF1<0時(shí),上述不等式可化為:SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0正負(fù)大小不確定,所以SKIPIF1<0大小不確定,即SKIPIF1<0的大小關(guān)系不能確定,故選項(xiàng)D錯(cuò)誤.故選:B【點(diǎn)睛】思路點(diǎn)睛:該題考查通過(guò)構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷單調(diào)性比較大小的題,屬于難題,常見(jiàn)的構(gòu)造函數(shù)有:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0,SKIPIF1<0;(5)SKIPIF1<0.二、選擇題:本大題共4小題,每小題5分,共20分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得5分,有選錯(cuò)的得0分,部分選對(duì)的得2分.9.設(shè)直線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0:SKIPIF1<0,下列說(shuō)法正確的是()A.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與SKIPIF1<0不重合B當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與SKIPIF1<0相交C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0【答案】BD【解析】【分析】舉出反例判斷A;聯(lián)立SKIPIF1<0,結(jié)合SKIPIF1<0是否為0,討論方程組解的情況,判斷直線的位置關(guān)系,判斷SKIPIF1<0,討論SKIPIF1<0是否為0,結(jié)合SKIPIF1<0可判斷兩直線是否垂直,判斷D.【詳解】對(duì)于A,SKIPIF1<0時(shí),若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0時(shí),兩直線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0:SKIPIF1<0重合,A錯(cuò)誤;對(duì)于B,聯(lián)立SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)方程組有唯一一組解,故直線SKIPIF1<0與SKIPIF1<0相交,B正確;對(duì)于C,SKIPIF1<0時(shí),若SKIPIF1<0,則SKIPIF1<0無(wú)解,此時(shí)SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0有無(wú)數(shù)多組解,此時(shí)SKIPIF1<0重合,故C錯(cuò)誤;對(duì)于D,若SKIPIF1<0,則由SKIPIF1<0可得SKIPIF1<0,即兩直線斜率之積等于SKIPIF1<0,故SKIPIF1<0;若SKIPIF1<0,則可得SKIPIF1<0,此時(shí)滿足SKIPIF1<0,直線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0:SKIPIF1<0,此時(shí)SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,D正確,故選:SKIPIF1<010.已知空間向量SKIPIF1<0,SKIPIF1<0,下列說(shuō)法正確的是()A.若SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0與SKIPIF1<0夾角為銳角,則SKIPIF1<0【答案】ABD【解析】【分析】對(duì)于A:結(jié)合向量垂直的性質(zhì)即可求解;對(duì)于B:結(jié)合向量的四則運(yùn)算即可求解;對(duì)于C:利用投影的幾何意義即可求解;對(duì)于D:根據(jù)向量的夾角公式即可求解.【詳解】對(duì)于A:SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即:SKIPIF1<0,解得:SKIPIF1<0.故A選項(xiàng)正確;對(duì)于B:SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,解得:SKIPIF1<0.故B選項(xiàng)正確;對(duì)于C:SKIPIF1<0在SKIPIF1<0上的投影向量為:SKIPIF1<0,即SKIPIF1<0,代入坐標(biāo)化簡(jiǎn)可得:SKIPIF1<0,SKIPIF1<0無(wú)解,故C選項(xiàng)錯(cuò)誤;對(duì)于D:SKIPIF1<0SKIPIF1<0與SKIPIF1<0夾角為銳角,SKIPIF1<0SKIPIF1<0,解得:SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0不共線,即SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0夾角為銳角時(shí),解得:SKIPIF1<0.故D選項(xiàng)正確;故選:ABD.11.如圖,已知點(diǎn)P是橢圓SKIPIF1<0上第一象限內(nèi)的動(dòng)點(diǎn),SKIPIF1<0,SKIPIF1<0分別為橢圓的左、右焦點(diǎn),圓心在y軸上的動(dòng)圓T始終與射線SKIPIF1<0,SKIPIF1<0相切,切點(diǎn)分別為M,N,則下列判斷正確的是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0面積的最大值為SKIPIF1<0D.當(dāng)點(diǎn)P坐標(biāo)為SKIPIF1<0時(shí),則直線PT的斜率是SKIPIF1<0【答案】AD【解析】【分析】根據(jù)橢圓的定義及圓外一點(diǎn)切線長(zhǎng)性質(zhì)可判斷A,結(jié)合基本不等式可判斷B,利用橢圓焦點(diǎn)三角形的角度與面積關(guān)系可判斷C,根據(jù)角平分線定理可求解直線SKIPIF1<0與SKIPIF1<0軸交點(diǎn)坐標(biāo),從而可求直線SKIPIF1<0的斜率來(lái)判斷D.【詳解】解:已知橢圓橢圓SKIPIF1<0,則SKIPIF1<0,所以左右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0對(duì)于A,如下圖,連接SKIPIF1<0,點(diǎn)P是橢圓上第一象限內(nèi)的動(dòng)點(diǎn),所以SKIPIF1<0,又圓心SKIPIF1<0在y軸上,所以SKIPIF1<0,動(dòng)圓T始終與射線SKIPIF1<0,SKIPIF1<0相切,切點(diǎn)分別為M,N,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,切線長(zhǎng)SKIPIF1<0所以由圖可得:SKIPIF1<0,則SKIPIF1<0,故A正確;對(duì)于B,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,又P是橢圓上第一象限內(nèi)的動(dòng)點(diǎn),所以SKIPIF1<0,故SKIPIF1<0,由于SKIPIF1<0,故SKIPIF1<0,故B不正確;對(duì)于C,取橢圓的上頂點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,由橢圓可知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,由于P是橢圓上第一象限內(nèi)的動(dòng)點(diǎn),所以SKIPIF1<0,則SKIPIF1<0,于是可得SKIPIF1<0面積SKIPIF1<0,故SKIPIF1<0面積沒(méi)有最大值,故C不正確;對(duì)于D,連接SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,如下圖:設(shè)SKIPIF1<0,由題可得直線SKIPIF1<0為SKIPIF1<0的平分線,所以由角平分線定理可得:SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,因?yàn)楫?dāng)點(diǎn)P坐標(biāo)為SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以直線PT的斜率SKIPIF1<0,故D正確.故選:AD.12.已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0(SKIPIF1<0,2,…),則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【解析】【分析】對(duì)于A選項(xiàng),只需判斷SKIPIF1<0;對(duì)于B選項(xiàng),通過(guò)通項(xiàng)公式可求得SKIPIF1<0;對(duì)于C選項(xiàng),將條件轉(zhuǎn)化為SKIPIF1<0,可判斷錯(cuò)誤;對(duì)于D選項(xiàng),將數(shù)列放縮成等比數(shù)列求和,可判斷正確.【詳解】由條件SKIPIF1<0,兩邊同時(shí)除以SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,對(duì)于A選項(xiàng),∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故A選項(xiàng)正確;SKIPIF1<0,SKIPIF1<0,所以B選項(xiàng)錯(cuò)誤;對(duì)于C選項(xiàng),SKIPIF1<0,SKIPIF1<0等價(jià)于SKIPIF1<0,由極限思想知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故C選項(xiàng)錯(cuò)誤;對(duì)于D選項(xiàng),SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,又∵SKIPIF1<0,所以D選項(xiàng)正確.故選:AD.【點(diǎn)睛】本題考查了數(shù)列由遞推公式求通項(xiàng)公式,以及關(guān)鍵對(duì)通項(xiàng)公式的形式進(jìn)行分析,放縮,判斷.屬于較難題.非選擇題部分三、填空題:本大題共4小題,每小題5分,共20分.13.已知圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切,則有序?qū)崝?shù)對(duì)SKIPIF1<0可以是______.(寫(xiě)出一對(duì)即可)【答案】SKIPIF1<0(答案不唯一)【解析】【分析】根據(jù)給定條件,求出兩個(gè)圓的圓心、半徑及圓心距,再結(jié)合兩圓內(nèi)切列式求解作答.【詳解】圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0,圓SKIPIF1<0,SKIPIF1<0,圓心SKIPIF1<0,半徑SKIPIF1<0,依題意,SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0且SKIPIF1<0,所以有序?qū)崝?shù)對(duì)SKIPIF1<0可以是SKIPIF1<0.故答案為:SKIPIF1<014.11世紀(jì),阿拉伯?dāng)?shù)學(xué)家阿爾?卡克希利用幾何方法推出了自然數(shù)的三次方的求和公式(如圖所示),據(jù)此可知:SKIPIF1<0______.【答案】2025【解析】【分析】利用圖形的割補(bǔ)求面積,即可求得自然數(shù)的三次方的求和公式.【詳解】由題知,SKIPIF1<0可轉(zhuǎn)化為一個(gè)底邊長(zhǎng)為:SKIPIF1<0,高為:SKIPIF1<0的直角三角形,其面積即是自然數(shù)的三次方的求和:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.故答案為:2025.15.已知點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,B,C是拋物線上的動(dòng)點(diǎn)且SKIPIF1<0,若直線AC的斜率SKIPIF1<0,則點(diǎn)B縱坐標(biāo)的取值范圍是______.【答案】SKIPIF1<0【解析】【分析】由已知得出SKIPIF1<0,即可設(shè)出SKIPIF1<0,SKIPIF1<0,則根據(jù)已知可得SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0可解出SKIPIF1<0,由SKIPIF1<0整理為SKIPIF1<0,根據(jù)已知得出關(guān)于SKIPIF1<0的方程SKIPIF1<0,在SKIPIF1<0上有解,即可解出SKIPIF1<0或SKIPIF1<0,綜合即可得出答案.【詳解】SKIPIF1<0點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0直線AC的斜率SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,由SKIPIF1<0解得:SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,SKIPIF1<0整理化簡(jiǎn)為:SKIPIF1<0,則關(guān)于SKIPIF1<0的方程SKIPIF1<0,在SKIPIF1<0上有解,則SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,綜上所述:點(diǎn)B縱坐標(biāo)的取值范圍是SKIPIF1<0,故答案為:SKIPIF1<0.16.四面體ABCD中,SKIPIF1<0,二面角SKIPIF1<0的大小為SKIPIF1<0,則四面體ABCD外接球體積的最小值為_(kāi)_____.【答案】SKIPIF1<0【解析】【分析】作出圖,利用外接球球心到各頂點(diǎn)距離相等,結(jié)合題中的邊長(zhǎng)和二面角大小,求出外接球半徑的表達(dá)式,進(jìn)而求出外接球半徑的最小值即可求解.【詳解】如圖,設(shè)SKIPIF1<0為四面體SKIPIF1<0的外接球球心,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0在平面SKIPIF1<0,SKIPIF1<0上的投影分別為SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由外接球的性質(zhì)可知:SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的外心,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是二面角SKIPIF1<0的平面角,則SKIPIF1<0.由SKIPIF1<0可知:SKIPIF1<0為正三角形,所以SKIPIF1<0,因?yàn)镾KIPIF1<0為四面體SKIPIF1<0的外接球球心,所以SKIPIF1<0,則SKIPIF1<0,進(jìn)而SKIPIF1<0四點(diǎn)共面,設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0為SKIPIF1<0的外心,所以SKIPIF1<0(同弧所對(duì)的圓心角是圓周角的二倍),則SKIPIF1<0,如圖,延長(zhǎng)SKIPIF1<0交于點(diǎn)SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,也即SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),外接球半徑最小,最小為SKIPIF1<0,此時(shí)四面體SKIPIF1<0外接球體積的最小,所以四面體SKIPIF1<0外接球體積的最小值為SKIPIF1<0,故答案為:SKIPIF1<0.四、解答題:本大題共6小題,共70分.解答應(yīng)寫(xiě)出文字說(shuō)明.證明過(guò)程或演算步驟.17.已知點(diǎn)SKIPIF1<0及圓C:SKIPIF1<0.(1)求過(guò)P且與圓C相切直線方程;(2)以PC為直徑的圓交圓C于A,B兩點(diǎn),求SKIPIF1<0.【答案】(1)SKIPIF1<0或SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)分類討論直線的斜率存在與不存在,利用點(diǎn)到直線的距離等于半徑即可求解;(2)兩圓相減即可得公共弦所在的直線方程,再根據(jù)點(diǎn)到直線的距離公式與垂徑定理即可求解.【小問(wèn)1詳解】由題知,圓C的圓心SKIPIF1<0,SKIPIF1<0當(dāng)k不存在時(shí),SKIPIF1<0,符合題意.當(dāng)k存在時(shí),設(shè)直線方程為SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0綜上所述,切線方程為SKIPIF1<0或SKIPIF1<0【小問(wèn)2詳解】以PC為直徑的圓的方程為SKIPIF1<0所以AB直線方程為SKIPIF1<0所以C到直線AB的距離為SKIPIF1<0∴SKIPIF1<0.18.已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0(SKIPIF1<0)(1)寫(xiě)出SKIPIF1<0,SKIPIF1<0,并求SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0(SKIPIF1<0),求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的通項(xiàng)公式為:SKIPIF1<0;(2)SKIPIF1<0【解析】【分析】(1)由遞推公式求出SKIPIF1<0,SKIPIF1<0;根據(jù)遞推公式求出SKIPIF1<0;(2)利用錯(cuò)位相減法求和.【小問(wèn)1詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0;SKIPIF1<0解得:SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0為常數(shù)列.又SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.綜上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的通項(xiàng)公式為:SKIPIF1<0.【小問(wèn)2詳解】由SKIPIF1<0,得SKIPIF1<0,兩邊同乘以SKIPIF1<0得:SKIPIF1<0兩式相減得:SKIPIF1<0整理得:SKIPIF1<0.19.如圖,在四棱錐SKIPIF1<0中,底面ABCD為正方形,二面角SKIPIF1<0為直二面角.SKIPIF1<0,SKIPIF1<0,M,N分別為AP,AC的中點(diǎn).(1)求平面BMN與平面PCD夾角的余弦值;(2)若平面SKIPIF1<0平面SKIPIF1<0,求點(diǎn)A到直線l的距離.【答案】(1)SKIPIF1<0(2)SKIPIF1<0.【解析】【分析】(1)根據(jù)圖形位置關(guān)系,作SKIPIF1<0,SKIPIF1<0,連接MF,ND補(bǔ)成棱柱確定線面、面面關(guān)系,即可求得BMN與平面PCD夾角的余弦值;(2)由(1)可得面SKIPIF1<0面SKIPIF1<0,結(jié)合線面關(guān)系,即可求點(diǎn)A到交線的距離.【小問(wèn)1詳解】解:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∵面SKIPIF1<0面SKIPIF1<0,面SKIPIF1<0面SKIPIF1<0,又∵底面SKIPIF1<0為正方形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0面SKIPIF1<0,則SKIPIF1<0面PBC,故SKIPIF1<0面PBC,SKIPIF1<0面SKIPIF1<0,∴SKIPIF1<0,且面ABCD為正方形,如下圖,作SKIPIF1<0,SKIPIF1<0,連接MF,ND,∴四邊形SKIPIF1<0、四邊形SKIPIF1<0為矩形,則SKIPIF1<0∵M(jìn)、N分別為AP和AC的中點(diǎn)∴B、M、F三點(diǎn)共線,B、N、D三點(diǎn)共線,易知:面SKIPIF1<0與面SKIPIF1<0為同一個(gè)平面,且面SKIPIF1<0面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0面SKIPIF1<0∴SKIPIF1<0面SKIPIF1<0,結(jié)合SKIPIF1<0,故SKIPIF1<0面SKIPIF1<0,又SKIPIF1<0面SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,在矩形SKIPIF1<0中SKIPIF1<0,由SKIPIF1<0面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,故平面BMN與平面PCD夾角為SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0∴平面BMN與平面PCD夾角的余弦值為SKIPIF1<0;【小問(wèn)2詳解】解:由(1)知四邊形SKIPIF1<0為矩形,所以SKIPIF1<0,由(1)知:SKIPIF1<0面SKIPIF1<0,又SKIPIF1<0面SKIPIF1<0,故SKIPIF1<0∵面SKIPIF1<0面SKIPIF1<0∴A到直線l的距離即A到直線SKIPIF1<0的距離,即為線段SKIPIF1<0的長(zhǎng),∴A到直線l的距離為SKIPIF1<020.廣州塔外形優(yōu)美,游客都親切地稱之為“小蠻腰”,其主塔部分可近似地看成是由一個(gè)雙曲面和上下兩個(gè)圓面圍成的.其中雙曲面的構(gòu)成原理如圖所示:圓SKIPIF1<0,SKIPIF1<0所在的平面平行,SKIPIF1<0垂直于圓面,AB為一條長(zhǎng)度為定值的線段,其端點(diǎn)A,B分別在圓SKIPIF1<0,SKIPIF1<0上,當(dāng)A,B在圓上運(yùn)動(dòng)時(shí),線段AB形成的軌跡曲面就是雙曲面.用過(guò)SKIPIF1<0的任意一個(gè)平面去截雙曲面得到的截面曲線都是雙曲線,我們稱之為截面雙曲線.已知主塔的高度SKIPIF1<0,SKIPIF1<0,設(shè)塔身最細(xì)處的圓的半徑為SKIPIF1<0,上、下圓面的半徑分別為SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成公比為SKIPIF1<0的等比數(shù)列.(1)求SKIPIF1<0與SKIPIF1<0的夾角;(2)建立適當(dāng)?shù)淖鴺?biāo)系,求該雙曲面的截面雙曲線的漸近線方程.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】【分析】(1)根據(jù)給定條件,過(guò)A作SKIPIF1<0圓面SKIPIF1<0于點(diǎn)SKIPIF1<0,直線SKIPIF1<0與塔身最細(xì)處的圓的公共點(diǎn)為L(zhǎng),L在圓面SKIPIF1<0上射影為H,結(jié)合線面垂直求出SKIPIF1<0作答.(2)建立平面直角坐標(biāo)系,結(jié)合(1)中信息,求出點(diǎn)A的坐標(biāo),設(shè)出雙曲線方程即可代入求解作答.【小問(wèn)1詳解】過(guò)A作SKIPIF1<0圓面SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,如圖,則有SKIPIF1<0,令塔身最細(xì)處的圓的圓心為O,直線SKIPIF1<0與圓O的公共點(diǎn)為L(zhǎng),過(guò)L作SKIPIF1<0交SKIPIF1<0于H,連接SKIPIF1<0,必有SKIPIF1<0,SKIPIF1<0圓面SKIPIF1<0,SKIPIF1<0圓面SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,有SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0圓面SKIPIF1<0,則SKIPIF1<0,顯然圓面SKIPIF1<0圓面SKIPIF1<0,有SKIPIF1<0,因此SKIPIF1<0,依題意:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,于是得SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0.【小問(wèn)2詳解】由(1)知,SKIPIF1<0,SKIPIF1<0,在直角SKIPIF1<0中,SKIPIF1<0,因此SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,以塔身最細(xì)處的圓的圓心O為原點(diǎn),以SKIPIF1<0所在直線為y軸,以圓O的一條平行于SKIPIF1<0的直徑所在的直線為x軸,建立平面直角坐標(biāo)系,則雙曲線的頂點(diǎn)坐標(biāo)為SKIPIF1<0,設(shè)雙曲線方程為:SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0交x軸于點(diǎn)K,顯然四邊形SKIPIF1<0是平行四邊形,則SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0,代入雙曲線方程得:SKIPIF1<0,解得:SKIPIF1<0,所以雙曲線的漸近線方程為SKIPIF1<0.21.已知F是雙曲線C:SKIPIF1<0的右焦點(diǎn),過(guò)F的直線l交雙曲線右支于P,Q兩點(diǎn),PQ中點(diǎn)為M,O為坐標(biāo)原點(diǎn),連接OM交直線SKIPIF1<0于點(diǎn)N.(1)求證:SKIPIF1<0;(2)設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),求三角形SKIPIF1<0面積S最小值.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【解析】【分析】(1)設(shè)出PQ的方程,與雙曲線聯(lián)立消元,利用韋達(dá)定理求出點(diǎn)SKIPIF1<0的坐標(biāo),再利用向量的數(shù)量積等于0即可證明;(2)利用直線SKIPIF1<0中SKIPIF1<0范圍,通過(guò)韋達(dá)定理與SKIPIF1<0建立起聯(lián)系,從而求出SKIPIF1<0的范圍,再將面積用關(guān)于SKIPIF1<0的函數(shù)來(lái)表示,通過(guò)函數(shù)的單調(diào)性即可求得最小值.【小問(wèn)1詳解】由題知,在雙曲線SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0.因?yàn)檫^(guò)F的直線l交雙曲線右支于P,Q兩點(diǎn),故可設(shè)PQ的方程為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由SKIPIF1<0得SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0∴SKIPIF1<0,得直線OM的方程為SKIPIF1<0,從而得SKIPIF1<0由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0即SKIP
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度洗浴中心員工福利保障與激勵(lì)合同4篇
- 2024秀嶼區(qū)文印中心綜合性承包經(jīng)營(yíng)管理合同3篇
- 2024聘用駕駛員安全保障及應(yīng)急處理服務(wù)合同3篇
- 2025年度智能穿戴設(shè)備打膠密封服務(wù)合同4篇
- 2025年度智能船舶租賃合作協(xié)議模板4篇
- 2025年度玻璃纖維復(fù)合材料研發(fā)與市場(chǎng)拓展承包合同3篇
- 2024年租賃合同:設(shè)備租賃與維護(hù)條款
- 2025年度文化傳播公司員工辭退合同范本4篇
- 2025年度幼兒園食堂承包運(yùn)營(yíng)管理合同范本3篇
- 2025年度智慧城市建設(shè)戰(zhàn)略合作框架協(xié)議范本4篇
- 【人教版】九年級(jí)化學(xué)上冊(cè)期末試卷及答案【【人教版】】
- 四年級(jí)數(shù)學(xué)上冊(cè)期末試卷及答案【可打印】
- 人教版四年級(jí)數(shù)學(xué)下冊(cè)課時(shí)作業(yè)本(含答案)
- 中小學(xué)人工智能教育方案
- 高三完形填空專項(xiàng)訓(xùn)練單選(部分答案)
- 護(hù)理查房高鉀血癥
- 項(xiàng)目監(jiān)理策劃方案匯報(bào)
- 《職業(yè)培訓(xùn)師的培訓(xùn)》課件
- 建筑企業(yè)新年開(kāi)工儀式方案
- 營(yíng)銷組織方案
- 初中英語(yǔ)閱讀理解專項(xiàng)練習(xí)26篇(含答案)
評(píng)論
0/150
提交評(píng)論