福建省福州市八縣(市、區(qū))一中2022-2023學(xué)年高二上學(xué)期期末聯(lián)考數(shù)學(xué)試題(含解析)_第1頁
福建省福州市八縣(市、區(qū))一中2022-2023學(xué)年高二上學(xué)期期末聯(lián)考數(shù)學(xué)試題(含解析)_第2頁
福建省福州市八縣(市、區(qū))一中2022-2023學(xué)年高二上學(xué)期期末聯(lián)考數(shù)學(xué)試題(含解析)_第3頁
福建省福州市八縣(市、區(qū))一中2022-2023學(xué)年高二上學(xué)期期末聯(lián)考數(shù)學(xué)試題(含解析)_第4頁
福建省福州市八縣(市、區(qū))一中2022-2023學(xué)年高二上學(xué)期期末聯(lián)考數(shù)學(xué)試題(含解析)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022~2023學(xué)年第一學(xué)期高二八縣(市)期考聯(lián)考高中二年數(shù)學(xué)科試卷考試日期:月日完卷時(shí)間:120分鐘滿分:150分第I卷一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分.(在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知空間向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則x=()A.1 B.-13 C.13 D.-5【答案】B【解析】【分析】由空間向量垂直的坐標(biāo)表示求解即可.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故選:B.2.若直線l的方向向量是SKIPIF1<0,則直線l的傾斜角為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】由斜率與傾斜角,方向向量關(guān)系求解【詳解】由直線l的方向向量是SKIPIF1<0得直線SKIPIF1<0的斜率為SKIPIF1<0,設(shè)直線的傾斜角是SKIPIF1<0,故選:B.3.已知橢圓SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,離心率為SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線l交橢圓于A,B兩點(diǎn),若SKIPIF1<0的周長為8,則C的方程為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】由橢圓的定義知SKIPIF1<0的周長為SKIPIF1<0,結(jié)合已知條件求出SKIPIF1<0,再由離心率求出SKIPIF1<0,進(jìn)而求出SKIPIF1<0,從而得出答案.【詳解】依題意SKIPIF1<0的周長為SKIPIF1<0,SKIPIF1<0.則C的方程為SKIPIF1<0.故選:D4.若一圓與兩坐標(biāo)軸都相切,且圓心在第一象限,則圓心到直線SKIPIF1<0的距離為()A.SKIPIF1<0 B.SKIPIF1<0 C.5 D.3【答案】A【解析】【分析】根據(jù)題意可設(shè)圓的方程為SKIPIF1<0,且SKIPIF1<0,代入點(diǎn)到直線的距離公式即可求解.【詳解】因?yàn)閳A與兩坐標(biāo)軸都相切,且圓心在第一象限,則設(shè)圓心為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以設(shè)圓的方程為SKIPIF1<0且SKIPIF1<0,則圓心到直線的距離為SKIPIF1<0.故選:A5.已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0()A.1240 B.1550 C.1860 D.2170【答案】C【解析】【分析】根據(jù)等差數(shù)列前SKIPIF1<0項(xiàng)和的性質(zhì)得SKIPIF1<0成等差數(shù)列,即可求得SKIPIF1<0的值.【詳解】因?yàn)榈炔顢?shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,所以SKIPIF1<0成等差數(shù)列所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:C.6.如圖,已知正四棱錐SKIPIF1<0的所有棱長均為1,E為PC的中點(diǎn),則線段PA上的動(dòng)點(diǎn)M到直線BE的距離的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】方法一:建立空間直角坐標(biāo)系,求向量SKIPIF1<0在SKIPIF1<0上的投影的大小,再求點(diǎn)M到直線BE的距離,由此可求其最小值.方法二:證明SKIPIF1<0為異面直線SKIPIF1<0的公垂線段,由此可求動(dòng)點(diǎn)M到直線BE的距離的最小值.【詳解】連接SKIPIF1<0,記直線SKIPIF1<0的交點(diǎn)為SKIPIF1<0,由已知SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,以點(diǎn)SKIPIF1<0為原點(diǎn),SKIPIF1<0為SKIPIF1<0軸的正方向建立空間直角坐標(biāo)系,由已知SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上的投影向量的模為SKIPIF1<0,又SKIPIF1<0,所以動(dòng)點(diǎn)M到直線BE的距離SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),動(dòng)點(diǎn)M到直線BE的距離最小,最小值為SKIPIF1<0,故選:D.方法二:因?yàn)镾KIPIF1<0為等邊三角形,SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,由已知SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為異面直線SKIPIF1<0,SKIPIF1<0的公垂線段,所以SKIPIF1<0的長為動(dòng)點(diǎn)M到直線BE的距離最小值,所以動(dòng)點(diǎn)M到直線BE的距離最小值為SKIPIF1<0,故選:D.7.已知橢圓SKIPIF1<0與拋物線SKIPIF1<0有相同的焦點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0是兩曲線的一個(gè)公共點(diǎn),且SKIPIF1<0軸,則橢圓的離心率是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】分析可得SKIPIF1<0,求得SKIPIF1<0,設(shè)設(shè)橢圓的下焦點(diǎn)為SKIPIF1<0,利用勾股定理可求得SKIPIF1<0,利用橢圓的定義可求得該橢圓的離心率的值.【詳解】易知點(diǎn)SKIPIF1<0或SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,將SKIPIF1<0代入拋物線方程可得SKIPIF1<0,則SKIPIF1<0,設(shè)橢圓的下焦點(diǎn)為SKIPIF1<0,因?yàn)镾KIPIF1<0軸,則SKIPIF1<0,由橢圓的定義可得SKIPIF1<0,所以,橢圓的離心率為SKIPIF1<0.故選:C.8.初中時(shí)通常把反比例函數(shù)SKIPIF1<0的圖像叫做雙曲線,它的圖像就是在圓錐曲線定義下的雙曲線,只是因?yàn)樽鴺?biāo)系位置的不同,所以方程的形式才不同,當(dāng)K>0時(shí)只需把反比例函數(shù)的圖像繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)SKIPIF1<0,便得到焦點(diǎn)在x軸的雙曲線的圖形.所以也可以理解反比例函數(shù)的圖像是以x軸,y軸為漸近線,以直線y=x為實(shí)軸的等軸雙曲線,那么當(dāng)k=4時(shí),雙曲線的焦距為()A.8 B.4 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】結(jié)合所給信息,可得旋轉(zhuǎn)后,雙曲線變?yōu)榈容S雙曲線,再由SKIPIF1<0繞原點(diǎn)順時(shí)針旋轉(zhuǎn)所得坐標(biāo)在等軸雙曲線上可得等軸雙曲線方程.【詳解】由所給信息,可知旋轉(zhuǎn)后雙曲線以兩條相互垂直的直線作為漸近線,則雙曲線為等軸雙曲線,設(shè)為SKIPIF1<0.又注意到SKIPIF1<0在函數(shù)SKIPIF1<0圖像上,其與原點(diǎn)連線與x正半軸夾角為SKIPIF1<0,則將點(diǎn)SKIPIF1<0繞原點(diǎn)順時(shí)針旋轉(zhuǎn)SKIPIF1<0后,該點(diǎn)落在x正半軸,設(shè)為SKIPIF1<0,因旋轉(zhuǎn)前后到原點(diǎn)距離不變,則SKIPIF1<0.即將點(diǎn)SKIPIF1<0繞原點(diǎn)順時(shí)針旋轉(zhuǎn)SKIPIF1<0后,可得SKIPIF1<0,則SKIPIF1<0滿足SKIPIF1<0.可得雙曲線方程為SKIPIF1<0,則SKIPIF1<0,則焦距為SKIPIF1<0.故選:A二、多項(xiàng)選擇題:本題共4小題,每小題5分,共20分.(在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對的得5分,部分選對的得2分,有選錯(cuò)的得0分.)9.正四面體ABCD中,棱長為a,高為h,外接球半徑為R,內(nèi)切球半徑為r,AB與平面BCD所成角為SKIPIF1<0,二面角A-BD-C的大小為SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【解析】【分析】根據(jù)正四面體的性質(zhì)結(jié)合外接球、內(nèi)切球的性質(zhì)以及線面、面面夾角逐項(xiàng)分析運(yùn)算.【詳解】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0的中心SKIPIF1<0,連接SKIPIF1<0,對A:∵SKIPIF1<0為正四面體,則SKIPIF1<0平面SKIPIF1<0,故外接球的球心SKIPIF1<0(也為內(nèi)切球的球心)在SKIPIF1<0上,則SKIPIF1<0,A正確;對B:SKIPIF1<0∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,B錯(cuò)誤;對C:由SKIPIF1<0平面SKIPIF1<0,可得AB與平面BCD所成角為SKIPIF1<0,故SKIPIF1<0,C正確;對D:∵SKIPIF1<0為SKIPIF1<0的中點(diǎn),且SKIPIF1<0,則SKIPIF1<0,故二面角A-BD-C的大小為SKIPIF1<0,在SKIPIF1<0中,則SKIPIF1<0,D錯(cuò)誤.故選:AC.10.已知等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0,公差SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0有最大值 D.SKIPIF1<0【答案】ACD【解析】【分析】首先根據(jù)已知條件得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,再依次判斷選項(xiàng)即可得到答案.【詳解】因?yàn)闈M足SKIPIF1<0,公差SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0.對選項(xiàng)A,SKIPIF1<0,即SKIPIF1<0,故A正確.對選項(xiàng)B,SKIPIF1<0,故B錯(cuò)誤對選項(xiàng)C,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0有最大值.故C正確.對選項(xiàng)D,因?yàn)楫?dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0取得最大值,所以SKIPIF1<0,故D正確.故選:ACD11.已知拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0到準(zhǔn)線的距離為SKIPIF1<0,直線SKIPIF1<0過點(diǎn)SKIPIF1<0且與拋物線交于A、B兩點(diǎn),若SKIPIF1<0是線段AB的中點(diǎn),則()A.SKIPIF1<0 B.SKIPIF1<0 C.直線SKIPIF1<0的方程為SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】【分析】根據(jù)拋物線的幾何性質(zhì)可判斷B;利用點(diǎn)差法求解得直線斜率,從而可判斷C;由點(diǎn)SKIPIF1<0在直線SKIPIF1<0上可求得m,可判斷A;利用弦長公式可判斷D.【詳解】由題知,SKIPIF1<0,故拋物線方程為SKIPIF1<0.設(shè)SKIPIF1<0,易知SKIPIF1<0,則SKIPIF1<0,由點(diǎn)差法可得SKIPIF1<0又SKIPIF1<0是線段AB中點(diǎn),所以SKIPIF1<0,所以直線l的斜率SKIPIF1<0因?yàn)橹本€l過焦點(diǎn)SKIPIF1<0,所以l的方程為SKIPIF1<0,即SKIPIF1<0對于A:將SKIPIF1<0代入SKIPIF1<0可得SKIPIF1<0,A錯(cuò)誤;對于B:B正確;對于C:C正確;對于D:將SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故D錯(cuò)誤.故選:BC12.在數(shù)列SKIPIF1<0中,若SKIPIF1<0為常數(shù)),則稱SKIPIF1<0為“平方等差數(shù)列”.下列對“平方等差數(shù)列”的判斷,其中正確的為()A.SKIPIF1<0是平方等差數(shù)列B.若SKIPIF1<0是平方等差數(shù)列,則SKIPIF1<0是等差數(shù)列C.若SKIPIF1<0是平方等差數(shù)列,則SKIPIF1<0為常數(shù))也是平方等差數(shù)列D.若SKIPIF1<0是平方等差數(shù)列,則SKIPIF1<0為常數(shù))也是平方等差數(shù)列【答案】BD【解析】【分析】根據(jù)等差數(shù)列的定義,結(jié)合平方等差數(shù)列的定義逐一判斷即可.【詳解】對于A,當(dāng)SKIPIF1<0為奇數(shù)時(shí),則SKIPIF1<0為偶數(shù),所以SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時(shí),則SKIPIF1<0為奇數(shù),所以SKIPIF1<0,即SKIPIF1<0不符合平方等差數(shù)列的定義,故錯(cuò)誤;對于B,若SKIPIF1<0是平方等差數(shù)列,則SKIPIF1<0為常數(shù)),即SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,故正確;對于C,若SKIPIF1<0是平方等差數(shù)列,則SKIPIF1<0為常數(shù)),則SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0為等差數(shù)列時(shí),SKIPIF1<0,則SKIPIF1<0為平方等差數(shù)列,當(dāng)SKIPIF1<0不為等差數(shù)列時(shí),則SKIPIF1<0不為平方等差數(shù)列,故錯(cuò)誤;對于D,因?yàn)镾KIPIF1<0是平方等差數(shù)列,所以SKIPIF1<0,把以上的等式相加,得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即數(shù)列SKIPIF1<0是平方等差數(shù)列,故正確;故選:BD第Ⅱ卷三、填空題:本大題共4小題,每小題5分.13.在等差數(shù)列SKIPIF1<0中,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0______【答案】SKIPIF1<0【解析】【分析】根據(jù)已知先求公差,然后由通項(xiàng)公式可得.【詳解】記等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則有SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0所以SKIPIF1<0故答案為:SKIPIF1<014.已知雙曲線的漸近線方程為SKIPIF1<0,且過點(diǎn)SKIPIF1<0,則雙曲線的標(biāo)準(zhǔn)方程為________【答案】SKIPIF1<0【解析】【分析】由雙曲線的漸近線為SKIPIF1<0,設(shè)雙曲線方程為SKIPIF1<0,代入點(diǎn)的坐標(biāo)即可求得.【詳解】因?yàn)殡p曲線的漸近線方程為SKIPIF1<0,所以設(shè)雙曲線方程為SKIPIF1<0,因?yàn)殡p曲線過點(diǎn)SKIPIF1<0,代入解得SKIPIF1<0,所以雙曲線的方程為SKIPIF1<0.故答案為:SKIPIF1<015.將全體正奇數(shù)排成一個(gè)蛇形三角形數(shù)陣:按照以上排列的規(guī)律,記第SKIPIF1<0行第SKIPIF1<0個(gè)數(shù)為SKIPIF1<0,如SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0_____.【答案】69【解析】【分析】觀察數(shù)陣的排列規(guī)律,先確定SKIPIF1<0在數(shù)陣中的行SKIPIF1<0的值,再確定SKIPIF1<0在該行的項(xiàng)數(shù)SKIPIF1<0,由此可求SKIPIF1<0.【詳解】觀察可得數(shù)陣的第SKIPIF1<0行排SKIPIF1<0個(gè)數(shù),從第3行起,奇數(shù)行的數(shù)從左至右排列為公差為-2的等差數(shù)列,偶數(shù)行的數(shù)從左至右排列為公差為2的等差數(shù)列,將數(shù)陣中的所有數(shù)從小到大排列記為數(shù)列SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,因?yàn)?023在數(shù)陣的第SKIPIF1<0行,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以2023排在第45行,前45行共排了SKIPIF1<0個(gè)數(shù),即1035個(gè)數(shù),所以第45最大數(shù)為SKIPIF1<0,將第45行的數(shù)從左至右排列記為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)?023為數(shù)列SKIPIF1<0的第SKIPIF1<0項(xiàng),故SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.故答案為:69.16.如圖,已知一酒杯的內(nèi)壁是由拋物線SKIPIF1<0旋轉(zhuǎn)形成的拋物面,當(dāng)放入一個(gè)半徑為1的玻璃球時(shí),玻璃球可碰到酒杯底部的A點(diǎn),當(dāng)放入一個(gè)半徑為2的玻璃球時(shí),玻璃球不能碰到酒杯底部的A點(diǎn),則p的取值范圍為______.【答案】SKIPIF1<0【解析】【分析】根據(jù)題意分析可得:圓SKIPIF1<0與SKIPIF1<0只有一個(gè)交點(diǎn)SKIPIF1<0,圓SKIPIF1<0與SKIPIF1<0只有兩個(gè)交點(diǎn),分別聯(lián)立方程分析運(yùn)算.【詳解】如圖,由題意可得:圓SKIPIF1<0與SKIPIF1<0只有一個(gè)交點(diǎn)SKIPIF1<0,聯(lián)立方程SKIPIF1<0,消去x得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,圓SKIPIF1<0與SKIPIF1<0只有兩個(gè)交點(diǎn),聯(lián)立方程SKIPIF1<0,消去x得SKIPIF1<0,∵SKIPIF1<0,可得若SKIPIF1<0有根,則兩根同號,根據(jù)題意可知:SKIPIF1<0有且僅有一個(gè)正根,故SKIPIF1<0,則可得SKIPIF1<0,解得SKIPIF1<0,綜上所述:SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】方法點(diǎn)睛:在處理實(shí)際問題時(shí),體現(xiàn)數(shù)形結(jié)合的思想,將圖形轉(zhuǎn)化為代數(shù),這樣交點(diǎn)轉(zhuǎn)化為方程的根或函數(shù)的零點(diǎn),利用方程或函數(shù)的知識分析求解.四、解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟.(共6大題,10分+12分+12分+12分+12分+12分,共70分)17.在數(shù)列SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0在直線x-y+3=0上.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)SKIPIF1<0為等比數(shù)列,且SKIPIF1<0,記SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和,求SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0.【解析】【分析】(1)由條件根據(jù)等差數(shù)列定義證明數(shù)列SKIPIF1<0為等差數(shù)列,結(jié)合等差數(shù)列通項(xiàng)公式求其通項(xiàng);(2)由條件求數(shù)列SKIPIF1<0的首項(xiàng)和公比,根據(jù)等比數(shù)列求和公式求SKIPIF1<0.【小問1詳解】因?yàn)辄c(diǎn)SKIPIF1<0在直線SKIPIF1<0上,所以SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為公差的等差數(shù)列,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0;【小問2詳解】設(shè)數(shù)列SKIPIF1<0的公比為SKIPIF1<0,由(1)知SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.,18.已知平行四邊形SKIPIF1<0的三個(gè)頂點(diǎn)坐標(biāo)為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0.(1)求SKIPIF1<0所在的直線方程;(2)求平行四邊形SKIPIF1<0的面積.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)分析可知SKIPIF1<0,則SKIPIF1<0,可求得直線SKIPIF1<0的斜率,再利用點(diǎn)斜式可得出直線SKIPIF1<0的方程;(2)求出直線SKIPIF1<0的方程,可計(jì)算得出點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離,并求出SKIPIF1<0,再利用平行四邊形的面積公式可求得結(jié)果.【小問1詳解】解:因?yàn)樗倪呅蜸KIPIF1<0為平行四邊形,則SKIPIF1<0,則SKIPIF1<0,所以,直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.【小問2詳解】解:直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以,平行四邊形SKIPIF1<0的面積為SKIPIF1<0.19.如圖,點(diǎn)A(-2,1),B,C三點(diǎn)都在拋物線SKIPIF1<0上,拋物線的焦點(diǎn)為F,且F是SKIPIF1<0的重心.(1)求拋物線的方程和焦點(diǎn)F的坐標(biāo);(2)求BC中點(diǎn)M的坐標(biāo)及線段BC的長.【答案】(1)拋物線方程為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0【解析】【分析】(1)由點(diǎn)A在拋物線上可得拋物線方程,后可得焦點(diǎn)坐標(biāo);(2)設(shè)BC直線方程為SKIPIF1<0,將其與拋物線聯(lián)立,結(jié)合韋達(dá)定理及重心坐標(biāo)公式可得答案.【小問1詳解】因SKIPIF1<0在拋物線上,則SKIPIF1<0.則拋物線方程為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0;【小問2詳解】設(shè)BC線段所在直線方程為SKIPIF1<0,將其與拋物線方程聯(lián)立SKIPIF1<0,由題SKIPIF1<0.設(shè)SKIPIF1<0,則由韋達(dá)定理SKIPIF1<0.因F是SKIPIF1<0的重心,則SKIPIF1<0,則BC中點(diǎn)M的坐標(biāo)為SKIPIF1<0,SKIPIF1<0.又M在直線SKIPIF1<0上,則SKIPIF1<0,故SKIPIF1<0.則SKIPIF1<0SKIPIF1<0.20.如圖,等腰梯形SKIPIF1<0中,SKIPIF1<0,沿AE把SKIPIF1<0折起成四棱錐SKIPIF1<0,使得SKIPIF1<0.(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.【答案】(1)證明見解析;(2)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0.【解析】【分析】(1)先證明SKIPIF1<0平面SKIPIF1<0,由此證明SKIPIF1<0,再證明SKIPIF1<0,根據(jù)線面垂直判定定理證明SKIPIF1<0平面SKIPIF1<0,再根據(jù)面面垂直判定定理證明平面SKIPIF1<0平面SKIPIF1<0;(2)建立空間直角坐標(biāo)系,求平面SKIPIF1<0的法向量和SKIPIF1<0,再由距離公式求解.【小問1詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,在等腰梯形ABCD中,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0;【小問2詳解】由(1)SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,以點(diǎn)SKIPIF1<0為原點(diǎn),SKIPIF1<0為SKIPIF1<0軸的正方向,建立空間直角坐標(biāo)系,則SKIPIF1<0,所以SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0為平面SKIPIF1<0的一個(gè)法向量,所以點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,21.已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0(1)證明數(shù)列SKIPIF1<0為等差數(shù)列,并求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【答案】(1)證明見解析,SKIPIF1<0;(2)SKIPIF1<0.【解析】【分析】(1)根據(jù)等差數(shù)列的定義即可證明數(shù)列SKIPIF1<0是等差數(shù)列,并通過數(shù)列SKIPIF1<0的通項(xiàng)公式得到數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)因?yàn)镾KIPIF1<0,根據(jù)錯(cuò)位相減法即可求出數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【小問1詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以數(shù)列SKIPIF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論