版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年浙江省杭州市杭州四中高三一輪復(fù)習(xí)單元檢測試題(三)數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.洛書,古稱龜書,是陰陽五行術(shù)數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點(diǎn)為陰數(shù).如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機(jī)選取1個數(shù),則其和等于11的概率是().A. B. C. D.2.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.3.若與互為共軛復(fù)數(shù),則()A.0 B.3 C.-1 D.44.設(shè)是虛數(shù)單位,若復(fù)數(shù),則()A. B. C. D.5.已知各項都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.6.已知函數(shù)的定義域?yàn)?,則函數(shù)的定義域?yàn)椋ǎ〢. B.C. D.7.函數(shù)的圖象可能為()A. B.C. D.8.已知復(fù)數(shù)滿足,則()A. B.2 C.4 D.39.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的結(jié)果為()A. B.6 C. D.10.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.11.設(shè)分別為雙曲線的左、右焦點(diǎn),過點(diǎn)作圓的切線,與雙曲線的左、右兩支分別交于點(diǎn),若,則雙曲線漸近線的斜率為()A. B. C. D.12.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),,當(dāng)周長最小時,所在直線的斜率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個,從中任意摸取3個小球,每個小球被取出的可能性相等,則取出的3個小球中數(shù)字最大的為4的概率是__.14.函數(shù)的最小正周期是_______________,單調(diào)遞增區(qū)間是__________.15.已知數(shù)列的前項和為,,則滿足的正整數(shù)的值為______.16.設(shè)命題:,,則:__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項公式;(2)求數(shù)列的前項和.18.(12分)已知兩數(shù).(1)當(dāng)時,求函數(shù)的極值點(diǎn);(2)當(dāng)時,若恒成立,求的最大值.19.(12分)如圖,已知拋物線:與圓:()相交于,,,四個點(diǎn),(1)求的取值范圍;(2)設(shè)四邊形的面積為,當(dāng)最大時,求直線與直線的交點(diǎn)的坐標(biāo).20.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;(2)若,求的最大值.21.(12分)設(shè)函數(shù),,.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個零點(diǎn),().(i)求的取值范圍;(ii)求證:隨著的增大而增大.22.(10分)如圖,在直三棱柱中,,點(diǎn)P,Q分別為,的中點(diǎn).求證:(1)PQ平面;(2)平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機(jī)選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.【點(diǎn)睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于基礎(chǔ)題.2、D【解析】
先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因?yàn)椋瑪?shù)列是單調(diào)遞增數(shù)列,所以,則,化簡得,所以.故選:D.【點(diǎn)睛】本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問題.3、C【解析】
計算,由共軛復(fù)數(shù)的概念解得即可.【詳解】,又由共軛復(fù)數(shù)概念得:,.故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù)的概念.4、A【解析】
結(jié)合復(fù)數(shù)的除法運(yùn)算和模長公式求解即可【詳解】∵復(fù)數(shù),∴,,則,故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法、模長、平方運(yùn)算,屬于基礎(chǔ)題5、A【解析】試題分析:設(shè)公差為或(舍),故選A.考點(diǎn):等差數(shù)列及其性質(zhì).6、A【解析】試題分析:由題意,得,解得,故選A.考點(diǎn):函數(shù)的定義域.7、C【解析】
先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗(yàn)證求解.【詳解】因?yàn)?,所以是奇函?shù),故排除A,B,又,故選:C【點(diǎn)睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.8、A【解析】
由復(fù)數(shù)除法求出,再由模的定義計算出模.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法法則,考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.9、D【解析】
用列舉法,通過循環(huán)過程直接得出與的值,得到時退出循環(huán),即可求得.【詳解】執(zhí)行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應(yīng)該不滿足條件,退出循環(huán),輸出S的值為.故選D.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到的與的值是解題的關(guān)鍵,難度較易.10、C【解析】
由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點(diǎn)睛】本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.11、C【解析】
如圖所示:切點(diǎn)為,連接,作軸于,計算,,,,根據(jù)勾股定理計算得到答案.【詳解】如圖所示:切點(diǎn)為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點(diǎn)睛】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.12、A【解析】
本道題繪圖發(fā)現(xiàn)三角形周長最小時A,P位于同一水平線上,計算點(diǎn)P的坐標(biāo),計算斜率,即可.【詳解】結(jié)合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結(jié)合拋物線性質(zhì)可知,PF=PN,所以,故當(dāng)點(diǎn)P運(yùn)動到M點(diǎn)處,三角形周長最小,故此時M的坐標(biāo)為,所以斜率為,故選A.【點(diǎn)睛】本道題考查了拋物線的基本性質(zhì),難度中等.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題,得滿足題目要求的情況有,①有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選和②有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:①有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選,一共有種情況;②有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,一共有種情況,又從中任意摸取3個小球,有種情況,所以取出的3個小球中數(shù)字最大的為4的概率.故答案為:【點(diǎn)睛】本題主要考查古典概型與組合的綜合問題,考查學(xué)生分析問題和解決問題的能力.14、,,【解析】
化簡函數(shù)的解析式,利用余弦函數(shù)的圖象和性質(zhì)求解即可.【詳解】函數(shù),最小正周期,令,,可得,,所以單調(diào)遞增區(qū)間是,,.故答案為:,,,.【點(diǎn)睛】本題主要考查了二倍角的公式的應(yīng)用,余弦函數(shù)的圖象與性質(zhì),屬于中檔題.15、6【解析】
已知,利用,求出通項,然后即可求解【詳解】∵,∴當(dāng)時,,∴;當(dāng)時,,∴,故數(shù)列是首項為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.【點(diǎn)睛】本題考查通項求解問題,屬于基礎(chǔ)題16、,【解析】
存在符號改任意符號,結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點(diǎn)睛】本題考查全(特)稱命題.對全(特)稱命題進(jìn)行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對于一般命題的否定只需直接否定結(jié)論即可.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2).【解析】
(1)將等式變形為,進(jìn)而可證明出是等差數(shù)列,確定數(shù)列的首項和公差,可求得的表達(dá)式,進(jìn)而可得出數(shù)列的通項公式;(2)利用錯位相減法可求得數(shù)列的前項和.【詳解】(1)因?yàn)?,所以,即,所以?shù)列是等差數(shù)列,且公差,其首項所以,解得;(2),①,②①②,得,所以.【點(diǎn)睛】本題考查利用遞推公式證明等差數(shù)列,同時也考查了錯位相減法求和,考查推理能力與計算能力,屬于中等題.18、(1)唯一的極大值點(diǎn)1,無極小值點(diǎn).(2)1【解析】
(1)求出導(dǎo)函數(shù),求得的解,確定此解兩側(cè)導(dǎo)數(shù)值的正負(fù),確定極值點(diǎn);(2)問題可變形為恒成立,由導(dǎo)數(shù)求出函數(shù)的最小值,時,無最小值,因此只有,從而得出的不等關(guān)系,得出所求最大值.【詳解】解:(1)定義域?yàn)?,?dāng)時,,令得,當(dāng)所以在上單調(diào)遞增,在上單調(diào)遞減,所以有唯一的極大值點(diǎn),無極小值點(diǎn).(2)當(dāng)時,.若恒成立,則恒成立,所以恒成立,令,則,由題意,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以所以,所以,故的最大值為1.【點(diǎn)睛】本題考查用導(dǎo)數(shù)求函數(shù)極值,研究不等式恒成立問題.在求極值時,由確定的不一定是極值點(diǎn),還需滿足在兩側(cè)的符號相反.不等式恒成立深深轉(zhuǎn)化為求函數(shù)的最值,這里分離參數(shù)法起關(guān)鍵作用.19、(1)(2)點(diǎn)的坐標(biāo)為【解析】
將拋物線方程與圓方程聯(lián)立,消去得到關(guān)于的一元二次方程,拋物線與圓有四個交點(diǎn)需滿足關(guān)于的一元二次方程在上有兩個不等的實(shí)數(shù)根,根據(jù)二次函數(shù)的有關(guān)性質(zhì)即可得到關(guān)于的不等式組,解不等式即可.不妨設(shè)拋物線與圓的四個交點(diǎn)坐標(biāo)為,,,,據(jù)此可表示出直線、的方程,聯(lián)立方程即可表示出點(diǎn)坐標(biāo),再根據(jù)等腰梯形的面積公式可得四邊形的面積的表達(dá)式,令,由及知,對關(guān)于的面積函數(shù)進(jìn)行求導(dǎo),判斷其單調(diào)性和最值,即可求出四邊形的面積取得最大值時的值,進(jìn)而求出點(diǎn)坐標(biāo).【詳解】(1)聯(lián)立拋物線與圓的方程消去,得.由題意可知在上有兩個不等的實(shí)數(shù)根.所以解得,所以的取值范圍為.(2)根據(jù)(1)可設(shè)方程的兩個根分別為,(),則,,,,且,,所以直線、的方程分別為,,聯(lián)立方程可得,點(diǎn)的坐標(biāo)為,因?yàn)樗倪呅螢榈妊菪?所以,令,則,所以,因?yàn)?所以當(dāng)時,;當(dāng)時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,即當(dāng)時,四邊形的面積取得最大值,因?yàn)?點(diǎn)的坐標(biāo)為,所以當(dāng)四邊形的面積取得最大值時,點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值與最值、拋物線及其標(biāo)準(zhǔn)方程及直線與圓錐曲線相關(guān)的最值問題;考查運(yùn)算求解能力、轉(zhuǎn)化與化歸能力和知識的綜合運(yùn)用能力;利用函數(shù)的思想求圓錐曲線中面積的最值是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.20、(1)(2)【解析】
(1)根據(jù)單調(diào)遞減可知導(dǎo)函數(shù)恒小于等于,采用參變分離的方法分離出,并將的部分構(gòu)造成新函數(shù),分析與最值之間的關(guān)系;(2)通過對的導(dǎo)函數(shù)分析,確定有唯一零點(diǎn),則就是的極大值點(diǎn)也是最大值點(diǎn),計算的值并利用進(jìn)行化簡,從而確定.【詳解】(1)由題意知,在上恒成立,所以在上恒成立.令,則,所以在上單調(diào)遞增,所以,所以.(2)當(dāng)時,.則,令,則,所以在上單調(diào)遞減.由于,,所以存在滿足,即.當(dāng)時,,;當(dāng)時,,.所以在上單調(diào)遞增,在上單調(diào)遞減.所以,因?yàn)?,所以,所以,所?【點(diǎn)睛】(1)求函數(shù)中字母的范圍時,常用的方法有兩種:參變分離法、分類討論法;(2)當(dāng)導(dǎo)函數(shù)不易求零點(diǎn)時,需要將導(dǎo)函數(shù)中某些部分拿出作單獨(dú)分析,以便先確定導(dǎo)函數(shù)的單調(diào)性從而確定導(dǎo)函數(shù)的零點(diǎn)所在區(qū)間,再分析整個函數(shù)的單調(diào)性,最后確定出函數(shù)的最值.21、(1)見解析;(2)(i)(ii)證明見解析【解析】
(1)求出導(dǎo)函數(shù),分類討論即可求解;(2)(i)結(jié)合(1)的單調(diào)性分析函數(shù)有兩個零點(diǎn)求解參數(shù)取值范圍;(ii)設(shè),通過轉(zhuǎn)化,討論函數(shù)的單調(diào)性得證.【詳解】(1)因?yàn)椋援?dāng)時,在上恒成立,所以在上單調(diào)遞增,當(dāng)時,的解集為,的解集為,所以的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為;(2)(i)由(1)可知,當(dāng)時,在上單調(diào)遞增,至多一個零點(diǎn),不符題意,當(dāng)時,因?yàn)橛袃蓚€零點(diǎn),所以,解得,因?yàn)椋?,所以存在,使得,又因?yàn)椋O(shè),則,所以單調(diào)遞增,所以,即,因?yàn)?,所以存在,使得,綜上,;(ii)因?yàn)椋?,因?yàn)椋?,設(shè),則,所以,解得,所以,所以,設(shè),則,設(shè),則,所以單調(diào)遞增,所以,所以,即,所以單調(diào)遞增,即隨著的增大而增大,所以隨著的增大而增大,命題得證.【點(diǎn)睛】此題考查利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州城市職業(yè)學(xué)院《中國文化》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年廣東建筑安全員-B證(項目經(jīng)理)考試題庫
- 2025山西省建筑安全員B證(項目經(jīng)理)考試題庫
- 貴陽信息科技學(xué)院《GS原理與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州珠江職業(yè)技術(shù)學(xué)院《藥物分子生物學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025山東省建筑安全員C證考試(專職安全員)題庫及答案
- 2025年云南建筑安全員A證考試題庫
- 2025年山東省建筑安全員-B證考試題庫附答案
- 2025黑龍江省建筑安全員A證考試題庫及答案
- 2025福建建筑安全員A證考試題庫
- 中職班主任德育培訓(xùn)
- 中科院簡介介紹
- 《小石潭記》教學(xué)實(shí)錄及反思特級教師-王君
- 【高中語文】《錦瑟》《書憤》課件+++統(tǒng)編版+高中語文選擇性必修中冊+
- 醫(yī)療機(jī)構(gòu)(醫(yī)院)停電和突然停電應(yīng)急預(yù)案試題及答案
- 24年海南生物會考試卷
- 國家戰(zhàn)略思維課件
- 施工單位自評報告
- 招商租金政策方案
- 銀行金庫集中可行性報告
- 工程結(jié)算中的風(fēng)險識別與防控
評論
0/150
提交評論