版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省大連市旅順口區(qū)第三高級(jí)中學(xué)2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若圓與圓相切,則實(shí)數(shù)a的值為()A.或0 B.0C. D.或2.有6本不同的書(shū),按下列方式進(jìn)行分配,其中分配種數(shù)正確的是()A.分給甲、乙、丙三人,每人各2本,有15種分法;B.分給甲、乙、丙三人中,一人4本,另兩人各1本,有180種分法;C.分給甲乙每人各2本,分給丙丁每人各1本,共有90種分法;D.分給甲乙丙丁四人,有兩人各2本,另兩人各1本,有1080種分法;3.已知直線l與圓交于A,B兩點(diǎn),點(diǎn)滿足,若AB的中點(diǎn)為M,則的最大值為()A. B.C. D.4.已知橢圓的短軸長(zhǎng)為8,且一個(gè)焦點(diǎn)是圓的圓心,則該橢圓的左頂點(diǎn)為()A B.C. D.5.在中,若,,則外接圓半徑為()A. B.C. D.6.已知數(shù)列滿足,且,那么()A. B.C. D.7.已知,,,,則()A. B.C. D.8.命題“,”否定形式是()A., B.,C., D.,9.圓的圓心為()A. B.C. D.10.已知雙曲線C的離心率為,,是C的兩個(gè)焦點(diǎn),P為C上一點(diǎn),,若△的面積為,則雙曲線C的實(shí)軸長(zhǎng)為()A.1 B.2C.4 D.611.已知F是拋物線的焦點(diǎn),直線l是拋物線的準(zhǔn)線,則F到直線l的距離為()A.2 B.4C.6 D.812.某學(xué)校要從5名男教師和3名女教師中隨機(jī)選出3人去支教,則抽取的3人中,女教師最多為1人的選法種數(shù)為()A.10 B.30C.40 D.46二、填空題:本題共4小題,每小題5分,共20分。13.計(jì)算:________14.從編號(hào)為01,02,…,60的60個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本中的前兩個(gè)編號(hào)分別為02,08(編號(hào)按從小到大的順序排列),則樣本中最大的編號(hào)是_________15.已知數(shù)列滿足,,則______.16.美好人生路車(chē)站早上有6:40,6:50兩班開(kāi)往A校的公交車(chē),若李華同學(xué)在早上6:35至6:50之間隨機(jī)到達(dá)該車(chē)站,乘開(kāi)往A校的公交車(chē),公交車(chē)準(zhǔn)時(shí)發(fā)車(chē),則他等車(chē)時(shí)間不超過(guò)5分鐘的概率為_(kāi)_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓C:的長(zhǎng)軸長(zhǎng)為4,離心率e是方程的一根(1)求橢圓C的方程;(2)已知O是坐標(biāo)原點(diǎn),斜率為k的直線l經(jīng)過(guò)點(diǎn),已知直線l與橢圓C相交于點(diǎn)A,B,求面積的最大值18.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)記,其中表示不超過(guò)最大整數(shù),如,.(i)求、、;(ii)求數(shù)列的前項(xiàng)的和.19.(12分)已知是等差數(shù)列,,.(1)求的通項(xiàng)公式;(2)設(shè)的前項(xiàng)和,求的值.20.(12分)如圖,在四棱錐中,為平行四邊形,,平面,且,點(diǎn)是的中點(diǎn).(1)求證:平面;(2)在線段上(不含端點(diǎn))是否存在一點(diǎn),使得二面角的余弦值為?若存在,確定的位置;若不存在,請(qǐng)說(shuō)明理由.21.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,過(guò)點(diǎn)F且斜率大于0的直線交拋物線C于A,B兩點(diǎn)(其中A在B的上方),過(guò)線段AB的中點(diǎn)M且與x軸平行的直線依次交直線OA、OB,l于點(diǎn)P、Q、N(1)試探索PM與NQ長(zhǎng)度的大小關(guān)系,并證明你的結(jié)論;(2)當(dāng)P、Q是線段MN的三等分點(diǎn)時(shí),求直線AB的斜率;(3)當(dāng)P、Q不是線段MN的三等分點(diǎn)時(shí),證明:以點(diǎn)Q為圓心、線段QO長(zhǎng)為半徑的圓Q不可能包圍線段NP22.(10分)如圖,在棱長(zhǎng)為2的正方體中,,分別為線段,的中點(diǎn).(1)求點(diǎn)到平面的距離;(2)求平面與平面夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)給定條件求出兩圓圓心距,再借助兩圓相切的充要條件列式計(jì)算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,而,即點(diǎn)不可能在圓內(nèi),則兩圓必外切,于是得,即,解得,所以實(shí)數(shù)a的值為或.故選:D2、D【解析】根據(jù)題意,分別按照選項(xiàng)說(shuō)法列式計(jì)算驗(yàn)證即可做出判斷.【詳解】選項(xiàng)A,6本不同的書(shū)分給甲、乙、丙三人,每人各2本,有種分配方法,故該選項(xiàng)錯(cuò)誤;選項(xiàng)B,6本不同的書(shū)分給甲、乙、丙三人,一人4本,另兩人各1本,先將6本書(shū)分成4-1-1的3組,再將三組分給甲乙丙三人,有種分配方法,故該選項(xiàng)錯(cuò)誤;選項(xiàng)C,6本不同的書(shū)分給甲乙每人各2本,有種方法,其余分給丙丁每人各1本,有種方法,所以不同的分配方法有種,故該選項(xiàng)錯(cuò)誤;選項(xiàng)D,先將6本書(shū)分為2-2-1-14組,再將4組分給甲乙丙丁4人,有種方法,故該選項(xiàng)正確.故選:D.3、A【解析】設(shè),,則、,由點(diǎn)在圓上可得,再由向量垂直的坐標(biāo)表示可得,進(jìn)而可得M的軌跡為圓,即可求的最大值.【詳解】設(shè),中點(diǎn),則,,又,,則,所以,又,則,而,,所以,即,綜上,,整理得,即為M的軌跡方程,所以在圓心為,半徑為的圓上,則.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由點(diǎn)圓位置、中點(diǎn)坐標(biāo)公式及向量垂直的坐標(biāo)表示得到關(guān)于的軌跡方程.4、D【解析】根據(jù)橢圓的一個(gè)焦點(diǎn)是圓的圓心,求得c,再根據(jù)橢圓的短軸長(zhǎng)為8求得b即可.【詳解】圓的圓心是,所以橢圓的一個(gè)焦點(diǎn)是,即c=3,又橢圓的短軸長(zhǎng)為8,即b=4,所以橢圓長(zhǎng)半軸長(zhǎng)為,所以橢圓的左頂點(diǎn)為,故選:D5、A【解析】根據(jù)三角形面積公式求出c,再由余弦定理求出a,根據(jù)正弦定理即可求外接圓半徑.【詳解】,,,解得由正弦定理可得:,所以故選:A6、D【解析】由遞推公式得到,,,再結(jié)合已知即可求解.【詳解】解:由,得,,又,那么故選:D7、D【解析】根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)和冪函數(shù)的單調(diào)性可得正確的選項(xiàng).【詳解】因?yàn)?,故,故,又,在上的增函?shù),故,故,故選:D.8、C【解析】利用含有一個(gè)量詞的命題的否定的定義求解.【詳解】因?yàn)槊}“,是特稱命題,所以其否定是全稱命題,即為,故選:C9、D【解析】由圓的標(biāo)準(zhǔn)方程求解.【詳解】圓的圓心為,故選:D10、C【解析】由已知條件可得,,,再由余弦定理得,進(jìn)而求其正弦值,最后利用三角形面積公式列方程求參數(shù)a,即可知雙曲線C的實(shí)軸長(zhǎng).【詳解】由題意知,點(diǎn)P在右支上,則,又,∴,,又,∴,則在△中,,∴,故,解得,∴實(shí)軸長(zhǎng)為,故選:C.11、B【解析】根據(jù)拋物線定義即可求解【詳解】由得,所以F到直線l的距離為故選:B12、C【解析】可分為女教師0人,男教師3人和女教師1人,男教師2人兩種情況,用組合數(shù)表示計(jì)算即得解【詳解】女教師最多為1人即女教師為0人或者1人若女教師為0人,則男教師有3人,有種選擇;若女教師為1人,則男教師2人,有種選擇;故女教師最多為1人的選法種數(shù)為種故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)無(wú)窮等比數(shù)列的求和公式直接即可求出答案.【詳解】.故答案為:.14、56【解析】根據(jù)系統(tǒng)抽樣的定義得到編號(hào)之間的關(guān)系,即可得到結(jié)論.【詳解】由已知樣本中的前兩個(gè)編號(hào)分別為02,08,則樣本數(shù)據(jù)間距為,則樣本容量為,則對(duì)應(yīng)的號(hào)碼數(shù),則當(dāng)時(shí),x取得最大值為56故答案為:5615、1023【解析】由數(shù)列遞推公式求特定項(xiàng),依次求下去即可解決.【詳解】數(shù)列中,則,,,,,,故答案為:102316、【解析】根據(jù)題意,李華等車(chē)不超過(guò)5分鐘,則他必須在6:35-6:40或者6:45-6:50到達(dá),進(jìn)而根據(jù)幾何概型求概率的方法求得答案.【詳解】由題意,李華等車(chē)不超過(guò)5分鐘,則他必須在6:35-6:40或者6:45-6:50到達(dá),則所求概率.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)待定系數(shù)法求橢圓的方程;(2)設(shè)直線的方程為,,,用“設(shè)而不求法”表示出三角形OAB的面積.令轉(zhuǎn)化為關(guān)于t的函數(shù),利用函數(shù)求最值.【詳解】(1)依題意得:,∴.方程的根為或.∵橢圓的離心率,∴,∴∴∴橢圓方程為.(2)設(shè)直線的方程為,,由,得,則,點(diǎn)到直線的距離為,.令,則..∵在單調(diào)遞增,∴時(shí).有最小值3.此時(shí)有最大值.∴面積的最大值為.18、(1);(2)(i),,;(ii).【解析】(1)推導(dǎo)出數(shù)列為等差數(shù)列,確定該數(shù)列的首項(xiàng)和公差,即可求得數(shù)列的通項(xiàng)公式;(2)(i)利用對(duì)數(shù)函數(shù)的單調(diào)性結(jié)合題中定義可求得、、的值;(ii)分別解不等式、、,結(jié)合題中定義可求得數(shù)列的前項(xiàng)的和.【小問(wèn)1詳解】解:因?yàn)?,,則,可得,,可得,以此類推可知,對(duì)任意的,.由,變形為,是一個(gè)以為公差的等差數(shù)列,且首項(xiàng)為,所以,,因此,.【小問(wèn)2詳解】解:(i),則,,則,故,,則,故;(ii),當(dāng)時(shí),即當(dāng)時(shí),,當(dāng)時(shí),即當(dāng)時(shí),,當(dāng)時(shí),即當(dāng)時(shí),,因此,數(shù)列的前項(xiàng)的和為.19、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,利用題中等式建立、的方程組,求出、的值,然后根據(jù)等差數(shù)列的通項(xiàng)公式求出數(shù)列的通項(xiàng)公式;(2)利用等差數(shù)列前項(xiàng)和公式求出,然后由求出的值.【詳解】(1)設(shè)等差數(shù)列的公差為,則,解得,,數(shù)列的通項(xiàng)為;(2)數(shù)列的前項(xiàng)和,由,化簡(jiǎn)得,即,.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式的求解,考查等差數(shù)列的前項(xiàng)和公式,常用的方法就是利用首項(xiàng)和公差建立方程組求解,考查運(yùn)算求解能力,屬于中等題.20、(1)見(jiàn)解析(2)存在,【解析】(1)連接交于點(diǎn),由三角形中位線性質(zhì)知,由線面平行判定定理證得結(jié)論;(2)以為原點(diǎn)建立空間直角坐標(biāo)系,假設(shè),可用表示出點(diǎn)坐標(biāo);根據(jù)二面角的向量求法可根據(jù)二面角的余弦值構(gòu)造出關(guān)于的方程,從而解得結(jié)果.【詳解】(1)連接交于點(diǎn),連接,四邊形為平行四邊形,為中點(diǎn),又為中點(diǎn),,平面,平面,平面;(2)平面,,兩兩互相垂直,則以為坐標(biāo)原點(diǎn),可建立如下圖所示的空間直角坐標(biāo)系:則,,,,,,設(shè),且,則,,即,設(shè)平面的法向量,又,,則,令,則,,;設(shè)平面的一個(gè)法向量,又,,則,令,則,,;,解得:或,二面角的余弦值為,二面角為銳二面角,不滿足題意,舍去,即.在線段上存在點(diǎn),時(shí),二面角的余弦值為.【點(diǎn)睛】本題考查立體幾何中的線面平行關(guān)系的證明、存在性問(wèn)題的求解;求解存在性問(wèn)題的關(guān)鍵是能夠利用共線向量的方式將所求點(diǎn)坐標(biāo)表示出來(lái),進(jìn)而利用二面角的向量求法構(gòu)造方程;易錯(cuò)點(diǎn)是忽略二面角的范圍,造成參數(shù)值求解錯(cuò)誤.21、(1),證明見(jiàn)解析(2)(3)證明見(jiàn)解析【解析】(1)根據(jù)已知條件設(shè)出直線方程及,與拋物線的方程聯(lián)立,利用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,三點(diǎn)共線的性質(zhì)即可求解;(2)根據(jù)已知條件得出,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,可得出直線的斜率;(3)根據(jù)(1)的結(jié)論及求根公式,求得點(diǎn)的坐標(biāo),結(jié)合的表達(dá)式,結(jié)合圖形可知,由的范圍和的取值即可證明.【小問(wèn)1詳解】由題意可知,拋物線的焦點(diǎn)為,設(shè)直線的方程為,則,消去,得,,,所以直線的方程為,由因?yàn)槿c(diǎn)共線,所以,,同理,,,所以,所以.【小問(wèn)2詳解】因?yàn)镻、Q是線段MN的三等分點(diǎn),所以,,,又,,所以,所以,解得或(舍)所以直線AB的斜率為.【小問(wèn)3詳解】由(1)知,,得,所以,,又,,,,當(dāng)時(shí),,由圖可知,,而只要,就有,所以當(dāng)P、Q不是線段MN的三等分點(diǎn)時(shí),以點(diǎn)Q為圓心、線段QO長(zhǎng)為半徑的圓Q不可能包
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行貸款委托代理合同(2篇)
- 巴西課件 湘教版
- 人教版南轅北轍課件
- 蘇教版江蘇省揚(yáng)州市揚(yáng)州中學(xué)教育集團(tuán)樹(shù)人學(xué)校2023-2024學(xué)年高一上學(xué)期期中數(shù)學(xué)試題
- 老舍《茶館》課件
- 外科護(hù)理課件
- 基層教育 課件
- 西京學(xué)院《中華才藝》2023-2024學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《外國(guó)文學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《中外電影史》2021-2022學(xué)年期末試卷
- 附件1-江西省病原微生物實(shí)驗(yàn)室備案登記表.doc-附件1
- 陶瓷工藝學(xué)4陶瓷成型
- qc_降低設(shè)備故障率(ppt)
- 磷酸鐵鋰電池產(chǎn)品說(shuō)明書(shū)
- D702-1~3 常用低壓配電設(shè)備及燈具安裝(2004年合訂本)_(高清版)
- 山西經(jīng)濟(jì)出版社小學(xué)信息技術(shù)第一冊(cè)全冊(cè)教案
- 空調(diào)系統(tǒng)試運(yùn)轉(zhuǎn)調(diào)試記錄填寫(xiě)范例
- 兒科常見(jiàn)疾病護(hù)理診斷和護(hù)理措施
- 特種作業(yè)人員臺(tái)賬.doc
- 圖書(shū)室開(kāi)放時(shí)間表(精編版)
- 3章SAA的功能應(yīng)用
評(píng)論
0/150
提交評(píng)論