江蘇省鹽城市濱??h八灘中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第1頁
江蘇省鹽城市濱??h八灘中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第2頁
江蘇省鹽城市濱??h八灘中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第3頁
江蘇省鹽城市濱??h八灘中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第4頁
江蘇省鹽城市濱??h八灘中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省鹽城市濱??h八灘中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《鏡花緣》是清代文人李汝珍創(chuàng)作的長篇小說,書中有這樣一個情節(jié):一座樓閣到處掛滿了五彩繽紛的大小燈球,燈球有兩種,一種是大燈下綴2個小燈,另一種是大燈下綴4個小燈,大燈共360個,小燈共1200個.若在這座樓閣的燈球中,隨機(jī)選取一個燈球,則這個燈球是大燈下綴4個小燈的概率為A. B.C. D.2.已知,則()A. B.C. D.3.若且,則下列選項中正確的是()A B.C. D.4.已知x,y滿足約束條件,則的最大值為()A.3 B.C.1 D.5.下列命題正確的是()A經(jīng)過三點(diǎn)確定一個平面B.經(jīng)過一條直線和一個點(diǎn)確定一個平面C.四邊形確定一個平面D.兩兩相交且不共點(diǎn)的三條直線確定一個平面6.已知全集,集合,則()A. B.C. D.7.?dāng)?shù)列滿足,對任意,都有,則()A. B.C. D.8.將函數(shù)圖象上所有點(diǎn)橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再將所得圖象向右平移個單位長度,得到函數(shù)的圖象,則()A. B.C. D.9.中國古代有一道數(shù)學(xué)題:“今有七人差等均錢,甲、乙均七十七文,戊、己、庚均七十五文,問戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七個人分錢,所分得的錢數(shù)構(gòu)成等差數(shù)列,甲、乙兩人共分得77文,戊、己、庚三人共分得75文,則戊、己兩人各分得多少文錢?則下列說法正確的是()A.戊分得34文,己分得31文 B.戊分得31文,己分得34文C.戊分得28文,己分得25文 D.戊分得25文,己分得28文10.2020年北京時間11月24日我國嫦娥五號探月飛行器成功發(fā)射.嫦娥五號是我國探月工程“繞、落、回”三步走的收官之戰(zhàn),經(jīng)歷發(fā)射入軌、地月轉(zhuǎn)移、近月制動、環(huán)月飛行、著陸下降、月面工作、月面上升、交會對接與樣品轉(zhuǎn)移、環(huán)月等待、月地轉(zhuǎn)移、再入回收等11個關(guān)鍵階段.在經(jīng)過交會對接與樣品轉(zhuǎn)移階段后,若嫦娥五號返回器在近月點(diǎn)(離月面最近的點(diǎn))約為200公里,遠(yuǎn)月點(diǎn)(離月面最遠(yuǎn)的點(diǎn))約為8600公里,以月球中心為一個焦點(diǎn)的橢圓形軌道上等待時間窗口和指令進(jìn)行下一步動作,月球半徑約為1740公里,則此橢圓軌道的離心率約為()A.0.32 B.0.48C.0.68 D.0.8211.已知數(shù)列為等差數(shù)列,則下列數(shù)列一定為等比數(shù)列的是()A. B.C. D.12.已知向量與平行,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從1,2,3,4,5中任取兩個不同的數(shù),其中一個作為對數(shù)的底數(shù)a,另一個作為對數(shù)的真數(shù)b.則的概率為______.14.曲線在點(diǎn)處的切線方程為_______.15.已知函數(shù),數(shù)列是正項等比數(shù)列,且,則__________16.已知函數(shù),則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在等差數(shù)列中,,前10項和(1)求列的通項公式;(2)若數(shù)列是首項為1,公比為2的等比數(shù)列,求的前8項和18.(12分)在中,a,b,c分別是內(nèi)角A,B,C的對邊,滿足.(1)求A;(2)若,求面積的最大值.19.(12分)已知某學(xué)校的初中、高中年級的在校學(xué)生人數(shù)之比為9:11,該校為了解學(xué)生的課下做作業(yè)時間,用分層抽樣的方法在初中、高中年級的在校學(xué)生中共抽取了100名學(xué)生,調(diào)查了他們課下做作業(yè)的時間,并根據(jù)調(diào)查結(jié)果繪制了如下頻率分布直方圖:(1)在抽取的100名學(xué)生中,初中、高中年級各抽取的人數(shù)是多少?(2)根據(jù)頻率分布直方圖,估計學(xué)生做作業(yè)時間的中位數(shù)和平均時長(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(3)另據(jù)調(diào)查,這100人中做作業(yè)時間超過4小時的人中2人來自初中年級,3人來自高中年級,從中任選2人,恰好1人來自初中年級,1人來自高中年級的概率是多少20.(12分)已知等差數(shù)列和正項等比數(shù)列滿足(1)求的通項公式;(2)求數(shù)列的前n項和21.(12分)已知數(shù)列滿足:(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前n項和為.若對恒成立.求正整數(shù)m的最大值22.(10分)已知等差數(shù)列的前n項和為,且,(1)求數(shù)列的通項公式;(2)若,求k的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè)大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據(jù)題意求得,再由古典概型及其概率的公式,即可求解【詳解】設(shè)大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據(jù)題意可得,解得,則燈球的總數(shù)為個,故這個燈球是大燈下綴4個小燈的概率為,故選B【點(diǎn)睛】本題主要考查了古典概型及其概率的計算,其中解答中根據(jù)題意列出方程組,求得兩種燈球的數(shù)量是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題2、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式及求導(dǎo)法則求導(dǎo)函數(shù)即可.【詳解】.故選:B.3、C【解析】對于A,作商比較,對于B,利用基本不等式的推廣式判斷,對于C,利用在單位圓中,內(nèi)接正邊形的面積小于內(nèi)接正邊形的面積判斷,對于D,利用放縮法判斷【詳解】,故錯誤;,故錯誤;在單位圓中,內(nèi)接正邊形的面積小于內(nèi)接正邊形的面積(必修三閱讀材料割圓術(shù)),則,故正確;,故錯誤故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查不等式的綜合應(yīng)用,考查基本不等式的推廣式的應(yīng)用,考查放縮法的應(yīng)用,對于C項解題的關(guān)鍵是利用了在單位圓中,內(nèi)接正邊形的面積小于內(nèi)接正邊形的面積求解,考查數(shù)學(xué)轉(zhuǎn)化思想,屬于難題4、A【解析】由題意首先畫出可行域,然后結(jié)合目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】繪制不等式組表示的平面區(qū)域如圖所示,結(jié)合目標(biāo)函數(shù)的幾何意義可知目標(biāo)函數(shù)在點(diǎn)A處取得最大值,聯(lián)立直線方程:,可得點(diǎn)A的坐標(biāo)為:,據(jù)此可知目標(biāo)函數(shù)的最大值為:.故選:A【點(diǎn)睛】方法點(diǎn)睛:求線性目標(biāo)函數(shù)的最值,當(dāng)時,直線過可行域且在y軸上截距最大時,z值最大,在y軸截距最小時,z值最小;當(dāng)時,直線過可行域且在y軸上截距最大時,z值最小,在y軸上截距最小時,z值最大.5、D【解析】由平面的基本性質(zhì)結(jié)合公理即可判斷.【詳解】對于A,過不在一條直線上三點(diǎn)才能確定一個平面,故A不正確;對于B,經(jīng)過一條直線和直線外一個點(diǎn)確定一個平面,故B不正確;對于C,空間四邊形不能確定一個平面,故C不正確;對于D,兩兩相交且不共點(diǎn)的三條直線確定一個平面,故D正確.故選:D6、B【解析】根據(jù)題意先求出,再利用交集定義即可求解.【詳解】全集,集合,則,故故選:B7、C【解析】首先根據(jù)題設(shè)條件可得,然后利用累加法可得,所以,最后利用裂項相消法求和即可.【詳解】由,得,則,所以,.故選:C.【點(diǎn)睛】本題考查累加法求數(shù)列通項,考查利用錯位相減法求數(shù)列的前n項和,考查邏輯思維能力和計算能力,屬于??碱}.8、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個單位長度,得到的圖象;第二步,圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到的圖象,即的圖象.故.故選:A9、C【解析】設(shè)甲、乙、丙、丁、戊、己、庚所分錢數(shù)分別為,,,,,,,再根據(jù)題意列方程組可解得結(jié)果.【詳解】依題意,設(shè)甲、乙、丙、丁、戊、己、庚所分錢數(shù)分別為,,,,,,,則,解得,所以戊分得(文),己分得(文),故選:C.10、C【解析】由題意可知,求出的值,從而可求出橢圓的離心率【詳解】解:由題意得,解得,所以離心率,故選:C11、A【解析】根據(jù)等比數(shù)列的定義判斷【詳解】設(shè)的公差是,即,顯然,且是常數(shù),是等比數(shù)列,若中一個為1,則,則不是等比數(shù)列,只要,,都不可能是等比數(shù)列,如,,故選:A12、D【解析】根據(jù)兩向量平行可求得、的值,即可得出合適的選項.【詳解】由已知,解得,,則.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用列舉法,結(jié)合古典概型概率計算公式以及對數(shù)的知識求得正確答案.【詳解】的所有可能取值為,,共種,滿足的為,,共種,所以的概率為.故答案為:14、.【解析】由求導(dǎo)公式求出導(dǎo)數(shù),再把代入求出切線的斜率,代入點(diǎn)式方程化為一般式即可.【詳解】由題意得,∴在點(diǎn)處的切線的斜率是,則在點(diǎn)處的切線方程是,即.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義.注意區(qū)分“在某點(diǎn)處的切線”與“過某點(diǎn)的切線”,前者“某點(diǎn)”是切點(diǎn),后者“某點(diǎn)”不一定是切點(diǎn).15、##9.5【解析】根據(jù)給定條件計算當(dāng)時,的值,再結(jié)合等比數(shù)列性質(zhì)計算作答.【詳解】函數(shù),當(dāng)時,,因數(shù)列是正項等比數(shù)列,且,則,,同理,令,又,則有,,所以.故答案為:16、2【解析】根據(jù)導(dǎo)數(shù)的計算法則計算即可.【詳解】∵,∴,∴∴.故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)347.【解析】(1)設(shè)等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設(shè)等差數(shù)列的公差為,則解得所以(2)由題意,,所以所以的前8項和為18、(1)(2)【解析】(1)由正弦定理得,再由范圍可得答案;(2)由余弦定理和基本不等式可得,再由面積公式可得答案.【小問1詳解】∵,由正弦定理得,又,所以,又,則;【小問2詳解】由余弦定理得,即,所以,當(dāng)且僅當(dāng),取“=”,所以面積的最大值為19、(1)初中、高中年級所抽取人數(shù)分別為45、55(2)2.375小時,2.4小時(3)【解析】(1)依據(jù)分層抽樣的原則列方程即可解決;(2)依據(jù)頻率分布直方圖計算學(xué)生做作業(yè)時間的中位數(shù)和平均時長即可;(3)依據(jù)古典概型即可求得恰好1人來自初中年級,1人來自高中年級的概率.【小問1詳解】設(shè)初中、高中年級所抽取人數(shù)分別為x、y,由已知可得,解得;【小問2詳解】的頻率為,的頻率為,的頻率為因為,,所以中位數(shù)在區(qū)間上,設(shè)為x,則,解得,所以學(xué)生做作業(yè)時間的中位數(shù)為2.375小時;平均時長為小時.故估計學(xué)生做作業(yè)時間的中位數(shù)為2.375小時,平均時長為2.4小時【小問3詳解】2人來自初中年級,記為,,3人來自高中年級,記為,,,則從中任選2人,所有可能結(jié)果有:,,,,,,,,,共10種,其中恰好1人來自初中年級,1人來自高中年級有6種可能,所以恰好1人來自初中年級,1人來自高中年級的概率為20、(1);(2)【解析】(1)根據(jù)條件列公差與公比方程組,解得結(jié)果,代入等差數(shù)列通項公式即可;(2)根據(jù)等比數(shù)列求和公式直接求解.【詳解】(1)設(shè)等差數(shù)列公差為,正項等比數(shù)列公比為,因為,所以因此;(2)數(shù)列的前n項和【點(diǎn)睛】本題考查等差數(shù)列以及等比數(shù)列通項公式、等比數(shù)列求和公式,考查基本分析求解能力,屬基礎(chǔ)題.21、(1);(2)2021.【解析】(1)求出公比和首項即可.(2)利用錯位相減法,求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論