河南省扶溝縣2023-2024學年數(shù)學高二上期末質(zhì)量檢測模擬試題含解析_第1頁
河南省扶溝縣2023-2024學年數(shù)學高二上期末質(zhì)量檢測模擬試題含解析_第2頁
河南省扶溝縣2023-2024學年數(shù)學高二上期末質(zhì)量檢測模擬試題含解析_第3頁
河南省扶溝縣2023-2024學年數(shù)學高二上期末質(zhì)量檢測模擬試題含解析_第4頁
河南省扶溝縣2023-2024學年數(shù)學高二上期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省扶溝縣2023-2024學年數(shù)學高二上期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.2.已知動圓M與直線y=2相切,且與定圓C:外切,求動圓圓心M的軌跡方程A. B.C. D.3.120°的二面角的棱上有A,B兩點,直線AC,BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB.已知,,,則CD的長為()A. B.C. D.4.若函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是A. B.C. D.5.雙曲線的左焦點到其漸近線的距離是()A. B.C. D.6.設(shè)平面的法向量為,平面的法向量為,若,則的值為()A.-5 B.-3C.1 D.77.甲、乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率()A.50% B.30%C.10% D.60%8.數(shù)學中的數(shù)形結(jié)合也可以組成世間萬物的絢麗畫面,-些優(yōu)美的曲線是數(shù)學形象美、對稱美、和諧美的產(chǎn)物.曲線C:為四葉玫瑰線.①方程(xy<0)表示的曲線在第二和第四象限;②曲線C上任一點到坐標原點0的距離都不超過2;③曲線C構(gòu)成的四葉玫瑰線面積大于4π;④曲線C上有5個整點(橫、縱坐標均為整數(shù)的點).則上述結(jié)論中正確的個數(shù)是()A.1 B.2C.3 D.49.已知直線與垂直,則為()A.2 B.C.-2 D.10.已知五個數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,則該樣本標準差為()A.1 B.C. D.211.五行學說是中華民族創(chuàng)造的哲學思想.古代先民認為,天下萬物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關(guān)系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關(guān)系的概率是()A. B.C. D.12.中,三邊長之比為,則為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不存在這樣的三角形二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)Sn是數(shù)列{an}的前n項和,且a1=-1,an+1=SnSn+1,則Sn=__________.14.以拋物線C的頂點為圓心的圓交C于、兩點,交C的準線于、兩點.,,則C的焦點到準線的距離為____.15.設(shè)過點K(-1,0)的直線l與拋物線C:y2=4x交于A、B兩點,為拋物線的焦點,若|BF|=2|AF|,則cos∠AFB=_______16.從甲、乙、丙、丁4位同學中,選出2位同學分別擔任正、副班長的選法數(shù)可以用表示為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐S?ABCD中,底面ABCD為矩形,,AB=2,,平面,,,E是SA的中點(1)求直線EF與平面SCD所成角的正弦值;(2)在直線SC上是否存在點M,使得平面MEF平面SCD?若存在,求出點M的位置;若不存在,請說明理由18.(12分)已知直線和的交點為(1)若直線經(jīng)過點且與直線平行,求直線的方程;(2)若直線經(jīng)過點且與兩坐標軸圍成的三角形的面積為,求直線的方程19.(12分)2020年8月,總書記對制止餐飲浪費行為作出重要指示,要求進一步加強宣傳教育,切實培養(yǎng)節(jié)約習慣,在全社會營造浪費可恥、節(jié)約光榮的氛圍.為貫徹總書記指示,大慶市某學校食堂從學生中招募志愿者,協(xié)助食堂宣傳節(jié)約糧食的相關(guān)活動.現(xiàn)已有高一63人、高二42人,高三21人報名參加志愿活動.根據(jù)活動安排,擬采用分層抽樣的方法,從已報名的志愿者中抽取12名志愿者,參加為期20天的第一期志愿活動(1)第一期志愿活動需從高一、高二、高三報名的學生中各抽取多少人?(2)現(xiàn)在要從第一期志愿者中的高二、高三學生中抽取2人粘貼宣傳標語,求抽出兩人都是高二學生的概率是多少?(3)食堂每天約有400人就餐,其中一組志愿者的任務(wù)是記錄學生每天倒掉的剩菜剩飯的重量(單位:公斤),以10天為單位來衡量宣傳節(jié)約糧食的效果.在一個周期內(nèi),這組志愿者記錄的數(shù)據(jù)如下:前10天剩菜剩飯的重量為:后天剩菜剩飯的重量為:借助統(tǒng)計中的圖、表、數(shù)字特征等知識,分析宣傳節(jié)約糧食活動的效果(選擇一種方法進行說明即可)20.(12分)已知函數(shù)的導函數(shù)為,且滿足(1)求及的值;(2)求在點處的切線方程21.(12分)已知橢圓的上一點處的切線方程為,橢圓C上的點與其右焦點F的最短距離為,離心率為(1)求橢圓C的標準方程;(2)若點P為直線上任一點,過P作橢圓的兩條切線PA,PB,切點為A,B,求證:22.(10分)如圖,圓錐的底面直徑與母線長均為4,PO是圓錐的高,點C是底面直徑AB所對弧的中點,點D是母線PA的中點(1)求圓錐的表面積;(2)求點B到直線CD的距離

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)正方體的性質(zhì)確定3條棱兩兩互為異面直線的情況數(shù),結(jié)合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.2、D【解析】由題意動圓M與直線y=2相切,且與定圓C:外切∴動點M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點M的軌跡是以C(0,-3)為焦點,直線y=3為準線的拋物線故所求M的軌跡方程為考點:軌跡方程3、B【解析】由,把展開整理求解【詳解】由已知可得:,,,,=41,∴.故選:B4、D【解析】,∵函數(shù)在區(qū)間單調(diào)遞增,∴在區(qū)間上恒成立.∴,而在區(qū)間上單調(diào)遞減,∴.∴取值范圍是.故選D考點:利用導數(shù)研究函數(shù)的單調(diào)性.5、A【解析】求出雙曲線焦點坐標與漸近線方程,利用點到直線的距離公式可求得結(jié)果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點坐標為,漸近線方程為,即,因,該雙曲線的左焦點到漸近線的距離為.故選:A6、C【解析】根據(jù),可知向量建立方程求解即可.【詳解】由題意根據(jù),可知向量,則有,解得.故選:C7、A【解析】根據(jù)甲獲勝和甲、乙兩人下成平局是互斥事件即可求解.【詳解】甲不輸有兩種情況:甲獲勝或甲、乙兩人下成平局,甲獲勝和甲、乙兩人下成平局是互斥事件,所以甲、乙兩人下成平局的概率為.故選:A.8、B【解析】對于①,由判斷,對于②,利用基本不等式可判斷,對于③,以為圓心,2為半徑的圓的面積與曲線圍成的面積進行比較即可,對于④,將和聯(lián)立,求解出兩曲線的切點,從而可判斷【詳解】對于①,由,得異號,方程(xy<0)關(guān)于原點及y=x對稱,所以方程(xy<0)表示的曲線在第二和第四象限,所以①正確,對于②,因為,所以,所以,所以,所以由曲線的對稱性可知曲線C上任一點到坐標原點0的距離都不超過2,所以②正確,對于③,由②可知曲線C上到原點的距離不超過2,而以為圓心,2為半徑的圓的面積為,所以曲線C構(gòu)成的四葉玫瑰線面積小于4π,所以③錯誤,對于④,將和聯(lián)立,解得,所以可得圓與曲線C相切于點,,,,而點(1,1)不滿足曲線方程,所以曲線在第一象限不經(jīng)過任何整數(shù)點,由曲線的對稱性可知曲線在其它象限也不經(jīng)過任何整數(shù)點,所以曲線C上只有1個整點(0,0),所以④錯誤,故選:B9、A【解析】利用一般式中直線垂直的系數(shù)關(guān)系列式求解.【詳解】因為直線與垂直,故選:A.10、B【解析】先求出的值,然后利用標準差公式求解即可【詳解】解:因為五個數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,所以,解得,所以標準差,故選:B11、C【解析】先計算從金、木、水、火、土五種元素中任取兩種的所有基本事件數(shù),再計算其中兩種元素恰是相生關(guān)系的基本事件數(shù),利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個基本事件,其中兩種元素恰是相生關(guān)系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個基本事件,所以所求概率.故選:C12、C【解析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角為鈍角.【詳解】設(shè)三邊分別為,,,中的最大角為,,為鈍角,為鈍角三角形.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、-.【解析】因為,所以,所以,即,又,即,所以數(shù)列是首項和公差都為的等差數(shù)列,所以,所以考點:數(shù)列的遞推關(guān)系式及等差數(shù)列的通項公式【方法點晴】本題主要考查了數(shù)列的通項公式、數(shù)列的遞推關(guān)系式的應用、等差數(shù)列的通項公式及其性質(zhì)定知識點的綜合應用,解答中得到,,確定數(shù)列是首項和公差都為的等差數(shù)列是解答的關(guān)鍵,著重考查了學生靈活變形能力和推理與論證能力,平時應注意方法的積累與總結(jié),屬于中檔試題14、2【解析】畫出圖形,設(shè)出拋物線方程,利用勾股定理以及圓的半徑列出方程求解即可.【詳解】解:設(shè)拋物線為y2=2px,如圖:,又,解得,設(shè)圓的半徑為,,解得:p=2,即C的焦點到準線的距離為:2.故答案為:2.15、【解析】根據(jù)已知設(shè)直線方程為與C聯(lián)立,結(jié)合|BF|=2|AF|,利用韋達定理計算可得點A,B的坐標,進而求出向量的坐標,進而利用求向量夾角余弦值的方法,即可得到答案.【詳解】令直線的方程為將直線方程代入批物線C:的方程,得令且,所以由拋物線的定義知,由|BF|=2|AF|可知,,則,解得:,,則A,B兩點坐標分別為,則則.故答案為:16、【解析】由題意知:從4為同學中選出2位進行排列,即可寫出表示方式.【詳解】1、從4位同學選出2位同學,2、把所選出的2位同學任意安排為正、副班長,∴選法數(shù)為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,M與S重合【解析】(1)分別取AB,BC中點M,N,易證兩兩互相垂直,以為正交基底,建立空間直角坐標系,先求得平面SCD的一個法向量,再由求解;(2)假設(shè)存在點M,使得平面MEF平面SCD,再求得平面MEF的一個法向量,然后由求解.小問1詳解】解:分別取AB,BC中點M,N,則,又平面則兩兩互相垂直,以為正交基底,建立如圖所示的空間直角坐標系,,所以,設(shè)平面SCD的一個法向量為,,,則,,直線EF與平面SBC所成角的正弦值為.【小問2詳解】假設(shè)存在點M,使得平面MEF平面SCD,,,設(shè)平面MEF的一個法向量,,令,則,平面MEF平面SCD,,,存在點,此時M與S重合.18、(1)(2)或【解析】(1)由已知可得交點坐標,再根據(jù)直線間的位置關(guān)系可得直線方程;(2)設(shè)直線方程,根據(jù)直線與兩坐標軸圍成的三角形的面積,列出方程組,解方程.【小問1詳解】解:聯(lián)立的方程,解得,即設(shè)直線的方程為:,將帶入可得所以的方程為:;【小問2詳解】解:法①:易知直線在兩坐標軸上的截距均不為,設(shè)直線方程為:,則直線與兩坐標軸交點為,由題意得,解得:或所以直線的方程為:或,即:或.法②:設(shè)直線的斜率為,則的方程為,當時,當時,所以,解得:或所以m的方程為或即:或.19、(1)6,4,2;(2);(3)答案見解析.【解析】(1)先求出抽樣比,然后每次按比例抽取即可求出;(2)先求出抽出兩人的基本事件,再求出兩人都是高二學生包含的基本事件,即可求出概率;(3)可求出平均值進行判斷;也可畫出莖葉圖觀察判斷.【詳解】解:(1)報名的學生共有126人,抽取的比例為,所以高一抽取人,高二抽取人,高三抽取人.(2)記高二四個學生為1,2,3,4,高三兩個學生為5,6,抽出兩人表示為(x,y),則抽出兩人的基本事件為(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15個基本事件,其中高二學生都在同一組包含(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6個基本事件.記抽出兩人都是高二學生為事件,則,所以高二學生都在同一組的概率是.(3)法一:(數(shù)字特征)前10天的平均值為23.5,后10天的平均值為20.5,因為20.5<23.5,所以宣傳節(jié)約糧食活動的效果很好.法二:(莖葉圖)畫出莖葉圖因為前10天的重量集中在23、24附近,而后10天的重量集中在20附近,所以節(jié)約宣傳后剩飯剩菜明顯減少,宣傳效果很好.20、(1);;(2).【解析】(1)由題可得,進而可得,然后可得,即得;(2)由題可求,,再利用點斜式即得.【小問1詳解】∵,∴,,∴,,∴.【小問2詳解】∵,,∴,,∴在點處的切線方程為,即.21、(1)(2)證明見解析【解析】(1)設(shè)為橢圓上的點,為橢圓的右焦點,求出然后求解最小值,推出,,,得到雙曲線方程(2)設(shè),,,,,即可得到,依題意可得以、為切點的切線方程,從而得到直線的方程,再分與兩種情況討論,即可得證;【小問1詳解】解:設(shè)為橢圓上的點,為橢圓的右焦點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論