




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省唐山市五校2023-2024學(xué)年數(shù)學(xué)高二上期末綜合測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線:和圓的位置關(guān)系是()A.相離 B.相切或相交C.相交 D.相切2.甲、乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率()A.50% B.30%C.10% D.60%3.過點且與雙曲線有相同漸近線的雙曲線方程為()A B.C. D.4.拋物線的焦點到準(zhǔn)線的距離為()A. B.C. D.5.雙曲線的漸近線方程為()A. B.C. D.6.拋物線C:的焦點為F,P,R為C上位于F右側(cè)的兩點,若存在點Q使四邊形PFRQ為正方形,則()A. B.C. D.7.已知向量,,且,,,則一定共線的三點是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D8.已知橢圓的左右焦點分別為,,過C上的P作y軸的垂線,垂足為Q,若四邊形是菱形,則C的離心率為()A. B.C. D.9.設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)的最小值為()A.3 B.1C.0 D.﹣110.已知函數(shù)的導(dǎo)函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A B.C. D.11.阿基米德是古希臘著名的數(shù)學(xué)家、物理學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知在平面直角坐標(biāo)系中,橢圓的面積為,兩焦點與短軸的一個端點構(gòu)成等邊三角形,則橢圓的標(biāo)準(zhǔn)方程是()A. B.C. D.12.在各項都為正數(shù)的數(shù)列中,首項為數(shù)列的前項和,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點在圓C:()內(nèi),過點M的直線被圓C截得的弦長最小值為8,則______14.已知數(shù)列滿足:,,,則______15.函數(shù)是R上的單調(diào)遞增函數(shù),則a的取值范圍是______16.橢圓x2+=1上的點到直線x+y-4=0的距離的最小值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的一個頂點為,離心率(1)求橢圓方程;(2)若直線與橢圓交于不同的兩點.若滿足,求直線的方程18.(12分)某城鎮(zhèn)為推進(jìn)生態(tài)城鎮(zhèn)建設(shè),對城鎮(zhèn)的生態(tài)環(huán)境、市容市貌等方面進(jìn)行了全面治理,為了解城鎮(zhèn)居民對治理情況的評價和建議,現(xiàn)隨機抽取了200名居民進(jìn)行問卷并評分(滿分100分),將評分結(jié)果制成如下頻率分布直方圖,已知圖中a,b,c成等比數(shù)列,且公比為2(1)求圖中a,b,c的值,并估計評分的均值(各段分?jǐn)?shù)用該段中點值作代表);(2)根據(jù)統(tǒng)計數(shù)據(jù),在評分為“50~60”和“80~90”的居民中用分層抽樣的方法抽取了6個居民.若從這6個居民中隨機選擇2個參加座談,求所抽取的2個居民中至少有1個評分在“80~90”的概率19.(12分)已知數(shù)列的前n項和為滿足(1)求證:是等比數(shù)列,并求數(shù)列通項公式;(2)若,數(shù)列的前項和為.求證:20.(12分)設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標(biāo)原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在說明理由.21.(12分)已知過點的圓的圓心M在直線上,且y軸被該圓截得的弦長為4(1)求圓M的標(biāo)準(zhǔn)方程;(2)設(shè)點,若點P為x軸上一動點,求的最小值,并寫出取得最小值時點P的坐標(biāo)22.(10分)我們知道,裝同樣體積的液體容器中,如果容器的高度一樣,那么側(cè)面所需的材料就以圓柱形的容器最省.所以汽油桶等裝液體的容器大都是圓柱形的,某臥式油罐如圖1所示,它垂直于軸的截面如圖2所示,已知截面圓的半徑是1米,弧的長為米表示劣弧與弦所圍成陰影部分的面積.(1)請寫出函數(shù)表達(dá)式;(2)用求導(dǎo)的方法證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】直線l:y﹣1=k(x﹣1)恒過點(1,1),且點(1,1)在圓上,直線的斜率存在,故可知直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關(guān)系【詳解】圓C:x2+y2﹣2y=0可化為x2+(y﹣1)2=1∴圓心為(0,1),半徑為1∵直線l:y﹣1=k(x﹣1)恒過點(1,1),且點(1,1)在圓上且直線的斜率存在∴直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關(guān)系是相交,故選C【點睛】本題考查的重點是直線與圓的位置關(guān)系,解題的關(guān)鍵是確定直線恒過定點,此題易誤選B,忽視直線的斜率存在2、A【解析】根據(jù)甲獲勝和甲、乙兩人下成平局是互斥事件即可求解.【詳解】甲不輸有兩種情況:甲獲勝或甲、乙兩人下成平局,甲獲勝和甲、乙兩人下成平局是互斥事件,所以甲、乙兩人下成平局的概率為.故選:A.3、C【解析】設(shè)與雙曲線有相同漸近線的雙曲線方程為,代入點的坐標(biāo),求出的值,即可的解.【詳解】設(shè)與雙曲線有相同漸近線的雙曲線方程為,代入點,得,解得,所以所求雙曲線方程為,即故選:C.4、C【解析】根據(jù)拋物線方程求出焦點坐標(biāo)與準(zhǔn)線方程,即可得解;【詳解】解:因為拋物線方程為,所以焦點坐標(biāo)為,準(zhǔn)線的方程為,所以焦點到準(zhǔn)線的距離為;故選:C5、A【解析】直接求出,,進(jìn)而求出漸近線方程.【詳解】中,,,所以漸近線方程為,故.故選:A6、A【解析】不妨設(shè),不妨設(shè),則,利用拋物線的對稱性及正方形的性質(zhì)列出的方程求得后可得結(jié)論【詳解】如圖所示,設(shè),不妨設(shè),則,由拋物線的對稱性及正方形的性質(zhì)可得,解得(正數(shù)舍去),所以故選:A7、A【解析】由已知,分別表示出選項對應(yīng)的向量,然后利用平面向量共線定理進(jìn)行判斷即可完成求解.【詳解】因,,,選項A,,,若A,B,D三點共線,則,即,解得,故該選項正確;選項B,,,若A,B,C三點共線,則,即,解得不存,故該選項錯誤;選項C,,,若B,C,D三點共線,則,即,解得不存在,故該選項錯誤;選項D,,,若A,C,D三點共線,則,即,解得不存在,故該選項錯誤;故選:A.8、C【解析】根據(jù)題意求出P點坐標(biāo),代入橢圓方程中,可整理得到關(guān)于a,c的等式,進(jìn)一步整理為關(guān)于e的方程,解得答案.【詳解】如圖示:由題意可知,因為四邊形是菱形,所以,則,所以P點坐標(biāo)為,將P點坐標(biāo)為代入得:,整理得,故,由于,解得,所以,故選:C.9、C【解析】線性規(guī)劃問題,作出可行域后,根據(jù)幾何意義求解【詳解】作出可行域如圖所示,,數(shù)形結(jié)合知過時取最小值故選:C10、D【解析】根據(jù)導(dǎo)函數(shù)大于,原函數(shù)單調(diào)遞增;導(dǎo)函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導(dǎo)函數(shù)得圖象可得:時,,所以在單調(diào)遞減,排除選項A、B,當(dāng)時,先正后負(fù),所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.11、A【解析】由橢圓的面積為和兩焦點與短軸的一個端點構(gòu)成等邊三角形,得到求解.【詳解】由題意得,解得,所以橢圓的標(biāo)準(zhǔn)方程是.故選:A12、C【解析】當(dāng)時,,故可以得到,因為,進(jìn)而得到,所以是等比數(shù)列,進(jìn)而求出【詳解】由,得,得,又?jǐn)?shù)列各項均為正數(shù),且,∴,∴,即∴數(shù)列是首項,公比的等比數(shù)列,其前項和,得,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)點與圓的位置關(guān)系,可求得r的取值范圍,再利用過圓內(nèi)一點最短的弦,結(jié)合弦長公式可得到關(guān)于r的方程,求解即可.【詳解】由點在圓C:內(nèi),且所以,又,解得過圓內(nèi)一點最短的弦,應(yīng)垂直于該定點與圓心的連線,即圓心到直線的距離為又,所以,解得故答案為:14、.【解析】運用累和法,結(jié)合等差數(shù)列前項和公式進(jìn)行求解即可.【詳解】因為,,所以當(dāng)時,有,因此有:,即,當(dāng)時,適合上式,所以,故答案為:.15、【解析】對求導(dǎo),由題設(shè)有恒成立,再利用導(dǎo)數(shù)求的最小值,即可求a的范圍.【詳解】由題設(shè),,又在R上的單調(diào)遞增函數(shù),∴恒成立,令,則,∴當(dāng)時,則遞減;當(dāng)時,則遞增.∴,故.故答案為:.16、【解析】設(shè)與直線x+y-4=0平行的直線方程為,求出即得解.【詳解】解:設(shè)與直線x+y-4=0平行的直線方程為,所以,代入橢圓方程得,令或.當(dāng)時,平行線間的距離為;當(dāng)時,平行線間的距離為.所以最小距離為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)首先由橢圓的一個頂點可以求出的值,再根據(jù)離心率可得到、的關(guān)系,聯(lián)立即可求得的值,進(jìn)而得到橢圓的方程;(2)先聯(lián)立直線與橢圓,結(jié)合韋達(dá)定理得到線段的中點的坐標(biāo),再根據(jù),即可求得的值,進(jìn)而求得直線的方程【詳解】(1)由一個頂點為,離心率,可得,,,解得,,即有橢圓方程為(2)由知點在線段的垂直平分線上,由,消去得,由,得方程的,即方程有兩個不相等的實數(shù)根設(shè)、,線段的中點,則,所以,所以,即,因為,所以直線的斜率為,由,得,所以,解得:,即有直線的方程為18、(1),,,均值為65.6(2)【解析】(1)根據(jù)a,b,c成等比數(shù)列且公比為2,得到a,b,c的關(guān)系,利用頻率之和為1,求出a,b,c,估計評分的均值;(2)利用列舉法得到基本事件,求出相應(yīng)的概率.【小問1詳解】由題意得,,,有,所以,即,解得,于是,評分在40~50,50~60,60~70,70~80,80~90,90~100的概率分別為0.15,0.20,0.30,0.20,0.10,0.05,則均分估計值為【小問2詳解】評分在“50~60”和“80~90”分別有40人和20人則所抽取的6個居民中,評分在“80~90”一組有2人,記為A1,A2,評分在“50~60”一組4人,記為B1,B2,B3,B4從這6人中選取2人的所有基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),共15個其中至少有1個評分在“80~90”的基本事件有9個則所求的概率,即抽取的2個居民中至少有1個評分在“80~90”的概率為19、(1)證明見解析,(2)證明見解析【解析】(1)令可求得的值,令,由可得,兩式作差可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定該數(shù)列的首項和公比,可求得數(shù)列的通項公式;(2)求得,利用錯位相減法可求得,結(jié)合數(shù)列的單調(diào)性可證得結(jié)論成立.【小問1詳解】證明:當(dāng)時,,解得,當(dāng)時,由可得,上述兩個等式作差得,所以,,則,因為,則,可得,,,以此類推,可知對任意的,,所以,,因此,數(shù)列是等比數(shù)列,且首項為,公比為,所以,,解得.【小問2詳解】證明:,則,其中,所以,數(shù)列為單調(diào)遞減數(shù)列,則,,,上式下式,得,所以,,因此,.20、(1);(2)存在,,.【解析】(1)根據(jù)橢圓E:(a,b>0)過M(2,),N(,1)兩點,直接代入方程解方程組即可.(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,當(dāng)切線斜率存在時,設(shè)該圓的切線方程為,聯(lián)立,根據(jù),結(jié)合韋達(dá)定理運算,同時滿足,則存在,否則不存在,當(dāng)切線斜率不存在時,驗證即可;在該圓的方程存在時,利用弦長公式結(jié)合韋達(dá)定理得到求解.【詳解】(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以,解得,所以,所以橢圓E的方程為.(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設(shè)該圓的切線方程為,聯(lián)立得,則△=,即,,,要使,需使,即,所以,所以,又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,所以,則所求的圓為,此時圓的切線都滿足或,而當(dāng)切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.因為,所以,,①當(dāng)時,,因為,所以,所以,所以,當(dāng)且僅當(dāng)時取”=”.②當(dāng)時,.③當(dāng)AB的斜率不存在時,兩個交點為或,所以此時,綜上,|AB|的取值范圍為,即:【點睛】思路點睛:1、解決直線與橢圓的位置關(guān)系的相關(guān)問題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡,然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問題.涉及弦中點的問題常常用“點差法”解決,往往會更簡單2、設(shè)直線與橢圓的交點坐標(biāo)為A(x1,y1),B(x2,y2),則(k為直線斜率)注意:利用公式計算直線被橢圓截得的弦長是在方程有解的情況下進(jìn)行的,不要忽略判別式大于零21、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 管理層收購案例分享
- 三方收款合同協(xié)議書范本
- 工業(yè)機器人技術(shù)與應(yīng)用模擬練習(xí)題(含參考答案)
- 大型廣告位租賃合同標(biāo)準(zhǔn)模板
- 物業(yè)管理高空作業(yè)安全合同協(xié)議
- 建筑消防系統(tǒng)施工合同范本
- 網(wǎng)絡(luò)平臺廣告位租賃合同25B
- 實習(xí)生勞動合同
- 新修訂教育法解讀
- 房地產(chǎn)景觀綠化工程合同
- 2025-2030中國露酒行業(yè)市場深度分析及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 生產(chǎn)車間5S管理制度
- 2025交管12123學(xué)法減分考試題庫和答案
- T-JDFA 02-2024 江蘇省轉(zhuǎn)型融資主體認(rèn)定評價標(biāo)準(zhǔn)
- 2025年開封大學(xué)單招職業(yè)傾向性測試題庫匯編
- 2023學(xué)年杭州市余杭區(qū)七年級語文下學(xué)期期中考試卷附答案解析
- 貴州省縣中新學(xué)校計劃項目2025屆高三下學(xué)期開學(xué)聯(lián)考語文試題及答案
- 2023-2024年護(hù)師類之護(hù)師初級基礎(chǔ)試題庫和答案要點
- 加快形成農(nóng)業(yè)新質(zhì)生產(chǎn)力
- 演員經(jīng)紀(jì)合同法律風(fēng)險-洞察分析
- 綜合實踐項目 制作細(xì)胞模型 教學(xué)實錄-2024-2025學(xué)年人教版生物七年級上冊
評論
0/150
提交評論