廣東省南海中學(xué)等七校聯(lián)合體2023-2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第1頁
廣東省南海中學(xué)等七校聯(lián)合體2023-2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第2頁
廣東省南海中學(xué)等七校聯(lián)合體2023-2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第3頁
廣東省南海中學(xué)等七校聯(lián)合體2023-2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第4頁
廣東省南海中學(xué)等七校聯(lián)合體2023-2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省南海中學(xué)等七校聯(lián)合體2023-2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.點(diǎn)M在圓上,點(diǎn)N在直線上,則|MN|的最小值是()A. B.C. D.12.某學(xué)校高二級(jí)選擇“史政地”“史政生”和“史地生”組合的同學(xué)人數(shù)分別為240,120和60.現(xiàn)采用分層抽樣的方法選出14位同學(xué)進(jìn)行一項(xiàng)調(diào)查研究,則“史政生”組合中選出的人數(shù)為()A.8 B.6C.4 D.33.已知橢圓C:的一個(gè)焦點(diǎn)為(0,-2),則k的值為()A.5 B.3C.9 D.254.設(shè)是定義在R上的可導(dǎo)函數(shù),若(為常數(shù)),則()A. B.C. D.5.已知雙曲線C的離心率為,,是C的兩個(gè)焦點(diǎn),P為C上一點(diǎn),,若△的面積為,則雙曲線C的實(shí)軸長為()A.1 B.2C.4 D.66.某地政府為落實(shí)疫情防控常態(tài)化,不定時(shí)從當(dāng)?shù)?80名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測(cè).把這批公務(wù)員按001到780進(jìn)行編號(hào),若018號(hào)被抽中,則下列編號(hào)也被抽中的是()A.076 B.122C.390 D.5227.命題:,否定是()A., B.,C., D.,8.已知命題:,命題:,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知是等比數(shù)列,則()A.數(shù)列是等差數(shù)列 B.數(shù)列是等比數(shù)列C.數(shù)列是等差數(shù)列 D.數(shù)列是等比數(shù)列10.已知等比數(shù)列中,,,則首項(xiàng)()A. B.C. D.011.設(shè)R,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知點(diǎn)是橢圓上的任意一點(diǎn),過點(diǎn)作圓:的切線,設(shè)其中一個(gè)切點(diǎn)為,則的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列滿足,請(qǐng)寫出一個(gè)符合條件的通項(xiàng)公式______14.已知橢圓C:,點(diǎn)M與C的焦點(diǎn)不重合,若M關(guān)于C的焦點(diǎn)的對(duì)稱點(diǎn)分別為A,B,線段MN的中點(diǎn)在C上,則_________.15.已知,為橢圓C的焦點(diǎn),點(diǎn)P在橢圓C上,,則的面積為___________.16.滕王閣,江南三大名樓之一,因初唐詩人王勃所作《滕王閣序》中的“落霞與孤鶩齊飛,秋水共長天一色”而名傳千古,流芳后世.如圖,在滕王閣旁地面上共線的三點(diǎn),,處測(cè)得閣頂端點(diǎn)的仰角分別為,,.且米,則滕王閣高度___________米.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,,,,平面,點(diǎn)F在線段上運(yùn)動(dòng).(1)若平面,請(qǐng)確定點(diǎn)F的位置并說明理由;(2)若點(diǎn)F滿足,求平面與平面的夾角的余弦值.18.(12分)如圖,四棱錐中,底面為正方形,底面,,點(diǎn),,分別為,,的中點(diǎn),平面棱(1)試確定的值,并證明你的結(jié)論;(2)求平面與平面夾角的余弦值19.(12分)設(shè)數(shù)列是公比為q的等比數(shù)列,其前n項(xiàng)和為(1)若,,求數(shù)列的前n項(xiàng)和;(2)若,,成等差數(shù)列,求q的值并證明:存在互不相同的正整數(shù)m,n,p,使得,,成等差數(shù)列;(3)若存在正整數(shù),使得數(shù)列,,…,在刪去以后按原來的順序所得到的數(shù)列是等差數(shù)列,求所有數(shù)對(duì)所構(gòu)成的集合,20.(12分)設(shè)二次函數(shù).(1)若是函數(shù)的兩個(gè)零點(diǎn),且最小值為.①求證:;②當(dāng)且僅當(dāng)a在什么范圍內(nèi)時(shí),函數(shù)在區(qū)間上存在最小值?(2)若任意實(shí)數(shù)t,在閉區(qū)間上總存在兩實(shí)數(shù)m,n,使得成立,求實(shí)數(shù)a的取值范圍.21.(12分)已知數(shù)列是等差數(shù)列,數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,且,,.(1)求數(shù)列和的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)如圖,在四棱錐中,四邊形為平行四邊形,且,,三角形為等腰直角三角形,且,.(1)若點(diǎn)為棱的中點(diǎn),證明:平面平面;(2)若平面平面,點(diǎn)為棱的中點(diǎn),求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)題意可知圓心,又由于線外一點(diǎn)到已知直線的垂線段最短,結(jié)合點(diǎn)到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,半徑為,所以圓心到的距離為,所以的最小值為.故選:C.2、C【解析】根據(jù)題意求得抽樣比,再求“史政生”組合中抽取的人數(shù)即可.【詳解】根據(jù)題意,分層抽樣的抽樣比為,故從“史政生”組合120中,抽取的人數(shù)時(shí)人.故選:.3、A【解析】由題意可得焦點(diǎn)在軸上,由,可得k的值.【詳解】∵橢圓的一個(gè)焦點(diǎn)是,∴,∴,故選:A4、C【解析】根據(jù)導(dǎo)數(shù)的定義即可求解.【詳解】.故選:C.5、C【解析】由已知條件可得,,,再由余弦定理得,進(jìn)而求其正弦值,最后利用三角形面積公式列方程求參數(shù)a,即可知雙曲線C的實(shí)軸長.【詳解】由題意知,點(diǎn)P在右支上,則,又,∴,,又,∴,則在△中,,∴,故,解得,∴實(shí)軸長為,故選:C.6、B【解析】根據(jù)系統(tǒng)抽樣的特點(diǎn),寫出組數(shù)與對(duì)應(yīng)抽取編號(hào)的關(guān)系式,即可判斷和選擇.【詳解】根據(jù)題意,780名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人,則需要分為組,每組人;設(shè)第組抽取的編號(hào)為,故可設(shè),又第一組抽中號(hào),故可得,解得故,當(dāng)時(shí),.故選:.7、D【解析】根據(jù)給定條件利用全稱量詞命題的否定是存在量詞命題直接寫出作答.【詳解】命題:,是全稱量詞命題,其否定是存在量詞命題,所以命題:,的否定是:,.故選:D8、B【解析】利用充分條件和必要條件的定義判斷.【詳解】因?yàn)槊}:或,命題:,所以是的必要不充分條件,故選:B9、B【解析】取,可判斷AC選項(xiàng);利用等比數(shù)列的定義可判斷B選項(xiàng);取可判斷D選項(xiàng).【詳解】若,則、無意義,A錯(cuò)C錯(cuò);設(shè)等比數(shù)列的公比為,則,(常數(shù)),故數(shù)列是等比數(shù)列,B對(duì);取,則,數(shù)列為等比數(shù)列,因?yàn)?,,,且,所以,?shù)列不是等比數(shù)列,D錯(cuò).故選:B.10、B【解析】設(shè)等比數(shù)列的公比為q,根據(jù)等比數(shù)列的通項(xiàng)公式,列出方程組,即可求得,進(jìn)而可求得答案.【詳解】設(shè)等比數(shù)列公比為q,則,解得,所以.故選:B11、A【解析】根據(jù)不等式性質(zhì)判斷即可.【詳解】若“”,則成立;反之,若,當(dāng),時(shí),不一定成立.如,但.故“”是“”的充分不必要條件.故答案為:A.【點(diǎn)睛】本題考查充分條件、必要調(diào)價(jià)的判斷,考查不等式與不等關(guān)系,屬于基礎(chǔ)題.12、B【解析】設(shè),得到,利用橢圓的范圍求解.【詳解】解:設(shè),則,,,因?yàn)?,所以,即,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3(答案不唯一)【解析】由已知條件結(jié)合等差數(shù)列的性質(zhì)可得,則,從而可寫出數(shù)列的一個(gè)通項(xiàng)公式【詳解】因?yàn)槭堑炔顢?shù)列,且,所以,當(dāng)公差為0時(shí),;公差為1時(shí),;…故答案為:3(答案為唯一)14、【解析】設(shè)M,N的中點(diǎn)坐標(biāo)為P,,則;由于,化簡可得,根據(jù)橢圓的定義==6,所以12.考點(diǎn):1.橢圓的定義;2.兩點(diǎn)距離公式.15、##【解析】設(shè),然后根據(jù)橢圓的定義和余弦定理列方程組可求出,再由三角形的面積公式可求得結(jié)果【詳解】由,得,則,設(shè),則,在中,,由余弦定理得,,所以,所以,所以,所以,故答案為:16、【解析】設(shè),由邊角關(guān)系可得,,,在和中,利用余弦定理列方程,結(jié)合可解得的值,進(jìn)而可得長.【詳解】設(shè),因?yàn)?,,,所以,,?在中,,即①.,在中,,即②,因?yàn)椋寓佗趦墒较嗉涌傻茫?,解得:,則,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)F為BD的中點(diǎn),證明見解析;(2).【解析】(1)由為的中點(diǎn),取的中點(diǎn),連接易證四邊形為平行四邊形,得到,再利用線面平行的判定定理證明;(2)根據(jù)題意可得平面ABC與平面AFC的夾角為二面角,取的中點(diǎn)H為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別求得平面的一個(gè)法向量,平面的一個(gè)法向量,設(shè)二面角為,由求解.【小問1詳解】為的中點(diǎn).如圖:取的中點(diǎn),連接∵,分別為,的中點(diǎn),∴且∵且∴平行且等于∴四邊形為平行四邊形,則∵平面ABC,平面ABC∴平面ABC【小問2詳解】由題意知,平面ABC與平面AFC的夾角為二面角,取的中點(diǎn)H為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.因?yàn)槿切螢榈妊切?,易求,則,,所以,,設(shè)平面的一個(gè)法向量為,則,即,解得設(shè)平面的一個(gè)法向量為,則,即,解得設(shè)二面角為,則,因?yàn)槎娼菫殇J角,所以余弦值為.18、(1),證明見解析(2)【解析】(1),利用線面平行的判定和性質(zhì)可得答案;(2)以為原點(diǎn),所在直線分別為的正方向建立空間直角坐標(biāo)系,求出平面的法向量和平面的法向量由向量夾角公式可得答案.【小問1詳解】.證明如下:在△中,因?yàn)辄c(diǎn)分別為的中點(diǎn),所以//.又平面,平面,所以//平面.因?yàn)槠矫?,平面平面,所?/所以//.在△中,因?yàn)辄c(diǎn)為的中點(diǎn),所以點(diǎn)為的中點(diǎn),即.【小問2詳解】因?yàn)榈酌鏋檎叫危?因?yàn)榈酌?,所以?如圖,建立空間直角坐標(biāo)系,則,,,因?yàn)榉謩e為的中點(diǎn),所以.所以,.設(shè)平面的法向量,則即令,于.又因?yàn)槠矫娴姆ㄏ蛄繛?,所以所以平面與平面夾角的余弦值為.19、(1)(2),證明見解析.(3)不存在,【解析】(1)數(shù)列為首項(xiàng)為公差為的等差數(shù)列,利用等差數(shù)列的求和公式即可得出結(jié)果;(2),,成等差數(shù)列,則+=2,根據(jù)等比數(shù)列求和公式計(jì)算可解得,進(jìn)而計(jì)算可得,即可判斷結(jié)果;(3)由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數(shù)列是等差數(shù)列,則,解方程組可得無解,則所有數(shù)對(duì)所構(gòu)成的集合為.【小問1詳解】,,數(shù)列是公比為q的等比數(shù)列,,數(shù)列為,數(shù)列為首項(xiàng)為公差為的等差數(shù)列,數(shù)列的前n項(xiàng)和.【小問2詳解】,,成等差數(shù)列,+=2,當(dāng)時(shí),+=,2,不符題意舍去,當(dāng)時(shí),.,即,,,(舍)或即,存在互不相同的正整數(shù),使得,,成等差數(shù)列,,,.【小問3詳解】由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數(shù)列是等差數(shù)列,則,,即,解得:方程組無解.即符合條件的不存在,所有數(shù)對(duì)所構(gòu)成的集合為.20、(1)①證明見解析;②(2)【解析】(1)①根據(jù)二次函數(shù)的性質(zhì)和一元二次方程的求根公式,求得,即可證得;②由①知,區(qū)間,根據(jù)二次函數(shù)的性質(zhì),即可求解.(2)存在兩實(shí)數(shù),使得成立,轉(zhuǎn)化為在區(qū)間上,有成立,設(shè)﹐結(jié)合二次函數(shù)的圖象與性質(zhì),分類討論,即可求解.【小問1詳解】解:①由題意,函數(shù)二次函數(shù),因?yàn)樽钚≈禐?,可得,即,因?yàn)?,所以根?jù)求根公式得,所以.②由①知,區(qū)間因?yàn)?,?duì)稱軸,且函數(shù)在區(qū)間上存在最小值,所以,因?yàn)?,所以解得,所以,即a的取值范圍為.【小問2詳解】解:存在兩實(shí)數(shù),使得成立,則在區(qū)間上,有成立,設(shè)﹐函數(shù)對(duì)稱軸為①當(dāng)即時(shí),在上單調(diào)減,,此時(shí);②當(dāng)即時(shí),,此時(shí)③當(dāng)即時(shí),,此時(shí);④當(dāng)即時(shí),,此時(shí);綜合①②③④得,且最小值為,因?yàn)閷?duì)任意實(shí)數(shù)t,都有,所以只需,即,所以實(shí)數(shù)a的取值范圍.21、(1),;(2),.【解析】(1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出;(2)利用分組求和的方法結(jié)合等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式即可得出.【詳解】(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,且,依題意有,由,又,解得,∴,即,;(2)∵,∴前項(xiàng)和.∴前項(xiàng)和,.22、(1)證明見解析(2)【解析】(1)先證明,,進(jìn)而證明平面,即可證明平面,從而證明平面平面.(2)以點(diǎn)為坐標(biāo)原點(diǎn),分別以,,所在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論