河南省盧氏實(shí)驗(yàn)高中2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁(yè)
河南省盧氏實(shí)驗(yàn)高中2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁(yè)
河南省盧氏實(shí)驗(yàn)高中2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁(yè)
河南省盧氏實(shí)驗(yàn)高中2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁(yè)
河南省盧氏實(shí)驗(yàn)高中2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南省盧氏實(shí)驗(yàn)高中2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知空間向量,則()A. B.C. D.2.隨機(jī)抽取甲乙兩位同學(xué)連續(xù)9次成績(jī)(單位:分),得到如圖所示的成績(jī)莖葉圖,關(guān)于這9次成績(jī),則下列說(shuō)法正確的是()A.甲成績(jī)的中位數(shù)為33 B.乙成績(jī)的極差為40C.甲乙兩人成績(jī)的眾數(shù)相等 D.甲成績(jī)的平均數(shù)低于乙成績(jī)的平均數(shù)3.拋物線上有兩個(gè)點(diǎn),焦點(diǎn),已知,則線段的中點(diǎn)到軸的距離是()A.1 B.C.2 D.4.已知是雙曲線的左焦點(diǎn),為右頂點(diǎn),是雙曲線上的點(diǎn),軸,若,則雙曲線的離心率為()A. B.C. D.5.定義域?yàn)榈暮瘮?shù)滿足,且的導(dǎo)函數(shù),則滿足的的集合為A. B.C. D.6.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱(chēng)為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.7.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B.C. D.8.若直線l與橢圓交于點(diǎn)A、B,線段的中點(diǎn)為,則直線l的方程為()A. B.C. D.9.已知圓的圓心在軸上,半徑為2,且與直線相切,則圓的方程為A. B.或C. D.或10.已知點(diǎn),在雙曲線上,線段的中點(diǎn),則()A. B.C. D.11.已知x,y滿足約束條件,則的最大值為()A.3 B.C.1 D.12.橢圓的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)橢圓,點(diǎn)在橢圓上,求該橢圓在P處的切線方程______.14.已知函數(shù)的導(dǎo)函數(shù)為,,,則的解集為_(kāi)__________.15.歷史上第一個(gè)研究圓錐曲線的是梅納庫(kù)莫斯(公元前375年—325年),大約100年后,阿波羅尼奧更詳盡、系統(tǒng)地研究了圓錐曲線,并且他還進(jìn)一步研究了這些圓錐曲線的光學(xué)性質(zhì),比如:從拋物線的焦點(diǎn)發(fā)出的光線或聲波在經(jīng)過(guò)拋物線反射后,反射光線平行于拋物線的對(duì)稱(chēng)軸:反之,平行于拋物線對(duì)稱(chēng)軸的光線,經(jīng)拋物線反射后,反射光線經(jīng)過(guò)拋物線的焦點(diǎn).已知拋物線,經(jīng)過(guò)點(diǎn)一束平行于C對(duì)稱(chēng)軸的光線,經(jīng)C上點(diǎn)P反射后交C于點(diǎn)Q,則PQ的長(zhǎng)度為_(kāi)_____.16.設(shè),復(fù)數(shù),,若是純虛數(shù),則的虛部為_(kāi)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在二項(xiàng)式的展開(kāi)式中,______.給出下列條件:①若展開(kāi)式前三項(xiàng)的二項(xiàng)式系數(shù)的和等于46;②所有奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和為256.試在上面兩個(gè)條件中選擇一個(gè)補(bǔ)充在上面的橫線上,并解答下列問(wèn)題:(1)求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng);(2)求展開(kāi)式的常數(shù)項(xiàng).18.(12分)如圖,已知頂點(diǎn),,動(dòng)點(diǎn)分別在軸,軸上移動(dòng),延長(zhǎng)至點(diǎn),使得,且.(1)求動(dòng)點(diǎn)的軌跡;(2)過(guò)點(diǎn)分別作直線交曲線于兩點(diǎn),若直線的傾斜角互補(bǔ),證明:直線的斜率為定值;(3)過(guò)點(diǎn)分別作直線交曲線于兩點(diǎn),若,直線是否經(jīng)過(guò)定點(diǎn)?若是,求出該定點(diǎn),若不是,說(shuō)明理由.19.(12分)已知圓與(1)過(guò)點(diǎn)作直線與圓相切,求的方程;(2)若圓與圓相交于、兩點(diǎn),求的長(zhǎng)20.(12分)已知直線l過(guò)點(diǎn)A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點(diǎn)P,Q,且|PQ|=8,求圓C的方程21.(12分)已知雙曲線的一條漸近線方程為,且雙曲線C過(guò)點(diǎn).(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)M的直線與雙曲線C的左右支分別交于A、B兩點(diǎn),是否存在直線AB,使得成立,若存在,求出直線AB的方程;若不存在,請(qǐng)說(shuō)明理由.22.(10分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若在上有解,求實(shí)數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】求得,即可得出.【詳解】,,,.故選:A.2、D【解析】按照莖葉圖所給的數(shù)據(jù)計(jì)算即可.【詳解】由莖葉圖可知,甲的成績(jī)?yōu)椋?1,22,23,24,32,32,33,41,52,其中位數(shù)為32,眾數(shù)為32,平均數(shù)為;乙的成績(jī)?yōu)椋?0,22,31,32,35,42,42,50,52,極差為52-10=42,眾數(shù)為42,平均數(shù)為;由以上數(shù)據(jù)可知,A錯(cuò)誤,B錯(cuò)誤,C錯(cuò)誤,D正確;故選:D.3、B【解析】利用拋物線的定義,將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離,即可求出線段中點(diǎn)的橫坐標(biāo),即得到答案.【詳解】由已知可得拋物線的準(zhǔn)線方程為,設(shè)點(diǎn)的坐標(biāo)分別為和,由拋物線的定義得,即,線段中點(diǎn)的橫坐標(biāo)為,故線段的中點(diǎn)到軸的距離是.故選:.4、C【解析】根據(jù)條件可得與,進(jìn)而可得,,的關(guān)系,可得解.【詳解】由已知得,設(shè)點(diǎn),由軸,則,代入雙曲線方程可得,即,又,所以,即,整理可得,故,解得或(舍),故選:C.5、B【解析】利用2f(x)<x+1構(gòu)造函數(shù)g(x)=2f(x)-x-1,進(jìn)而可得g′(x)=2f′(x)-1>0.得出g(x)的單調(diào)性結(jié)合g(1)=0即可解出【詳解】令g(x)=2f(x)-x-1.因?yàn)閒′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)單調(diào)增函數(shù)因?yàn)閒(1)=1,所以g(1)=2f(1)-1-1=0.所以當(dāng)x<1時(shí),g(x)<0,即2f(x)<x+1.故選B.【點(diǎn)睛】本題主要考察導(dǎo)數(shù)的運(yùn)算以及構(gòu)造函數(shù)利用其單調(diào)性解不等式.屬于中檔題6、C【解析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設(shè)外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C7、B【解析】寫(xiě)出每次循環(huán)的結(jié)果,即可得到答案.【詳解】當(dāng)時(shí),,,,;,此時(shí),退出循環(huán),輸出的的為.故選:B【點(diǎn)睛】本題考查程序框圖的應(yīng)用,此類(lèi)題要注意何時(shí)循環(huán)結(jié)束,建議數(shù)據(jù)不大時(shí)采用寫(xiě)出來(lái)的辦法,是一道容易題.8、A【解析】用點(diǎn)差法即可獲解【詳解】設(shè).則兩式相減得即因?yàn)?線段AB的中點(diǎn)為,所以所以所以直線的方程為,即故選:A9、D【解析】設(shè)圓心坐標(biāo),由點(diǎn)到直線距離公式可得或,進(jìn)而求得答案【詳解】設(shè)圓心坐標(biāo),因?yàn)閳A與直線相切,所以由點(diǎn)到直線的距離公式可得,解得或.因此圓的方程為或.【點(diǎn)睛】本題考查利用直線與圓的位置關(guān)系求圓的方程,屬于一般題10、D【解析】先根據(jù)中點(diǎn)弦定理求出直線的斜率,然后求出直線的方程,聯(lián)立后利用弦長(zhǎng)公式求解的長(zhǎng).【詳解】設(shè),,則可得方程組:,兩式相減得:,即,其中因?yàn)榈闹悬c(diǎn)為,故,故,即直線的斜率為,故直線的方程為:,聯(lián)立,解得:,由韋達(dá)定理得:,,則故選:D11、A【解析】由題意首先畫(huà)出可行域,然后結(jié)合目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】繪制不等式組表示的平面區(qū)域如圖所示,結(jié)合目標(biāo)函數(shù)的幾何意義可知目標(biāo)函數(shù)在點(diǎn)A處取得最大值,聯(lián)立直線方程:,可得點(diǎn)A的坐標(biāo)為:,據(jù)此可知目標(biāo)函數(shù)的最大值為:.故選:A【點(diǎn)睛】方法點(diǎn)睛:求線性目標(biāo)函數(shù)的最值,當(dāng)時(shí),直線過(guò)可行域且在y軸上截距最大時(shí),z值最大,在y軸截距最小時(shí),z值最?。划?dāng)時(shí),直線過(guò)可行域且在y軸上截距最大時(shí),z值最小,在y軸上截距最小時(shí),z值最大.12、A【解析】由橢圓標(biāo)準(zhǔn)方程求得,再計(jì)算出后可得離心率【詳解】在橢圓中,,,,因此,該橢圓的離心率為.故選:A.【點(diǎn)睛】本題考查求橢圓的離心率,根據(jù)橢圓標(biāo)準(zhǔn)方程求出即可二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可知切線的斜率存在,所以設(shè)切線方程為,代入橢圓方程中整理化簡(jiǎn),令判別式等于零,可求出的值,從而可求得切線方程【詳解】由題意可知切線的斜率存在,所以設(shè)切線方程為,將代入中得,,化簡(jiǎn)整理得,令,化簡(jiǎn)整理得,即,解得,所以切線方程為,即,故答案為:14、【解析】根據(jù),構(gòu)造函數(shù),利用其單調(diào)性求解.【詳解】因?yàn)?,所以,令,則,,所以是減函數(shù),又,即,,所以,所以,則的解集為故答案為:15、####【解析】根據(jù)題意,求得點(diǎn)以及拋物線焦點(diǎn)的坐標(biāo),即可求得所在直線方程,聯(lián)立其與拋物線方程,求得點(diǎn)的坐標(biāo),即可求得.【詳解】因?yàn)榻?jīng)過(guò)點(diǎn)一束平行于C對(duì)稱(chēng)軸的光線交拋物線于點(diǎn),故對(duì),令,則可得,也即的坐標(biāo)為,又拋物線的焦點(diǎn)的坐標(biāo)為,故可得直線方程為,聯(lián)立拋物線方程可得:,,解得或,將代入,可得,即的坐標(biāo)為,則.故答案為:.16、【解析】由復(fù)數(shù)除法的運(yùn)算法則求出,又是純虛數(shù),可求出,從而根據(jù)共軛復(fù)數(shù)及虛部的定義即可求解.【詳解】解:因?yàn)閺?fù)數(shù),,所以,又是純虛數(shù),所以,所以,所以所以的虛部為,故答案:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2).【解析】選擇①:,利用組合數(shù)公式,計(jì)算即可;選擇②:轉(zhuǎn)化為,計(jì)算即可(1)由于共9項(xiàng),根據(jù)二項(xiàng)式系數(shù)性質(zhì),二項(xiàng)式系數(shù)最大的項(xiàng)為第5項(xiàng)和第6項(xiàng),利用通項(xiàng)公式計(jì)算即可;(2)寫(xiě)出展開(kāi)式的通項(xiàng),令,即得解【詳解】選擇①.,即,即,即,解得或(舍去).選擇②.,即,解得.(1)展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)為第5項(xiàng)和第6項(xiàng),,.(2)展開(kāi)式的通項(xiàng)為,令,得,所以展開(kāi)式中常數(shù)項(xiàng)為第7項(xiàng),常數(shù)項(xiàng)為.18、(1);(2)證明見(jiàn)解析;(3).【解析】(1)設(shè)點(diǎn)M,P,Q的坐標(biāo),將向量進(jìn)行坐標(biāo)化,整理即可得軌跡方程;(2)設(shè)點(diǎn),,直線的傾斜角互補(bǔ),則兩直線斜率互為相反數(shù),用斜率公式計(jì)算得到,即可計(jì)算kAB;(3)若,由兩直線斜率積為-1,可得到關(guān)于與的等量關(guān)系,寫(xiě)出直線AB的方程,將等量關(guān)系代入直線方程整理可得直線AB經(jīng)過(guò)的定點(diǎn)【詳解】(1)設(shè),,.由,得,即.因?yàn)椋?,所?所以動(dòng)點(diǎn)的軌跡為拋物線,其方程為.(2)證明:設(shè)點(diǎn),,若直線的傾斜角互補(bǔ),則兩直線斜率互為相反數(shù),又,,所以,,整理得,所以.(3)因?yàn)?,所以,即,①直線的方程為:,整理得:,②將①代入②得,即,當(dāng)時(shí),即直線經(jīng)過(guò)定點(diǎn).【點(diǎn)睛】本題考查直接法求軌跡方程,考查直線斜率為定值的求法和直線恒過(guò)定點(diǎn)問(wèn)題.19、(1)或(2)【解析】(1)根據(jù)已知可得圓心與半徑,再利用幾何法可得切線方程;(2)聯(lián)立兩圓方程可得公共弦方程,進(jìn)而可得弦長(zhǎng).【小問(wèn)1詳解】解:圓的方程可化為:,即:圓的圓心為,半徑為若直線的斜率不存在,方程為:,與圓相切,滿足條件若直線的斜率存在,設(shè)斜率為,方程為:,即:由與圓相切可得:,解得:所以的方程為:,即:綜上可得的方程為:或【小問(wèn)2詳解】聯(lián)立兩圓方程得:,消去二次項(xiàng)得所在直線的方程:,圓的圓心到的距離,所以.20、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直關(guān)系得過(guò)直線l斜率,由點(diǎn)斜式化簡(jiǎn)即可求解l的一般式方程;(2)結(jié)合勾股定理建立弦心距(由點(diǎn)到直線距離公式求解),半弦長(zhǎng),圓半徑的基本關(guān)系,解出,即可求解圓C的方程【小問(wèn)1詳解】因?yàn)橹本€l與直線4x﹣3y+t=0垂直,所以直線l的斜率為,故直線l的方程為,即3x+4y+5=0,因此直線l的一般式方程為3x+4y+5=0;【小問(wèn)2詳解】圓C:x2+y2=m的圓心為(0,0),半徑為,圓心(0,0)到直線l的距離為,則半徑滿足m=42+12=17,即m=17,所以圓C:x2+y2=1721、(1);(2)存在,直線AB的方程為:或.【解析】(1)根據(jù)給定的漸近線方程及所過(guò)的點(diǎn)列式計(jì)算作答.(2)假定存在符合條件的直線AB,設(shè)出其方程,借助弦長(zhǎng)公式計(jì)算判斷作答.【小問(wèn)1詳解】依題意,,解得:,所以雙曲線C的標(biāo)準(zhǔn)方程是.【小問(wèn)2詳解】假定存在直線AB,使得成立,顯然不垂直于y軸,否則,設(shè)直線:,由消去x并整理得:,因直線與雙曲線C的左右支分別交于A、B兩點(diǎn),設(shè),于是得,則有,即或,因此,,解得,所以存在直線AB,使得成立,此時(shí),直線AB的方程為:或.22、(1)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)有極小值,無(wú)極大值(2)【解析】(1)利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,然后由極值的定義求解即可;(2)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論