概率統(tǒng)計(jì)中文概統(tǒng)課件lecture2_第1頁(yè)
概率統(tǒng)計(jì)中文概統(tǒng)課件lecture2_第2頁(yè)
概率統(tǒng)計(jì)中文概統(tǒng)課件lecture2_第3頁(yè)
概率統(tǒng)計(jì)中文概統(tǒng)課件lecture2_第4頁(yè)
概率統(tǒng)計(jì)中文概統(tǒng)課件lecture2_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Lecture2FiniteSampleSpaceTheProbabilityofaUnionofEvents1.6FiniteSampleSpaceAprobabilitydistributiononSisspecifiedbyassigningaprobabilitypitoeachpointsi.Fori=1,...,n,Also,TheprobabilityofanyeventAcanbefoundbyaddingtheprobabilitiespiofallessithatbelongtoA.ThesamplespaceScontainsonlyafinitenumberofpoints(es)s1,...,sn.Example:ConsumerComplaintsAmanufacturerofanelectromechanicalkitchenutensilconductedananalysisofalargenumberofconsumercomplaintsandfoundthattheyfellintothethreecategoriesshowninthetablebelow.Whatistheprobabilitythatthereasonforacomplaintiseitherelectricalormechanical?SimpleSampleSpacesAsamplespaceScontainingness1,...,sniscalledasimplesamplespaceif,i=1,...,n.IfaneventAcontainsexactlymes,thenExample:CokevsPepsi?Supposethatinsomepopulation,theprobabilityofpreferringcokeoverPepsiis50%.Threepeoplearesurveyed.WhatistheprobabilitythatexactlytwopeopleperferCoke?Simplesamplespace!Acontains3es,soPr(A)=3/8Thesamplespacecontains8es.S1:CCCS2:PCCS3:CPCS4:CCPS5:CPPS6:PCPS7:PPCS8:PPP InasimplesamplespaceS,howtodeterminethenumberoftotalesinthespaceSandinvariouseventsinSwithoutcompilingalistofthees?Permutation

(排列)n

個(gè)相異物體,有放回的抽出k個(gè)物體的排列總數(shù)為:

nkn

個(gè)相異物體,無放回(一次性)抽出k個(gè)物體的排列總數(shù)為:Pn,k=n(n-1)...(n-k+1)n

個(gè)相異物體的排列總數(shù)為:Pn,n=n(n-1)...1=n!(nfactorial)Define0!=1.Eachdifferentarrangementiscalledapermutation. Note:(a,b)and(b,a)aredifferentpermutations.Pn,k=n(n-1)...(n-k+1)iscalledthenumberofpermutationsofnelementstakenkatatime.Example1.7.1ChoosingOfficersApresidentandasecretaryaretobechosenfrom25members.Whatisthetotalnumberofwaysinwhichthesetwopositionscanbefilled?

P25,2=(25)(24)=600TheBirthdayProblemWhatistheprobabilitythatatleasttwopeopleinagroupofkpeople()willhavethesamebirthday?

Assumethebirthdaysofthekpeopleareunrelated.Alsoassumethateachofthe365daysisequallylikelytobethebirthdayofanypersoninthegroup.

Theprobabilitythatallkpeoplewillhavedifferentbirthdayis

TheprobabilitythatatleasttwopeoplewillhavethesamebirthdayisSimplesampleSpace!樣本空間中的樣本點(diǎn)個(gè)數(shù)?事件中的樣本點(diǎn)個(gè)數(shù)? k=10,p=0.1169482 k=20,p=0.4114384 k=30,p=0.7063162 k=40,p=0.8912318 k=50,p=0.9703736Combination(組合)Asubsetofkelementsistobeselectedfromasetofndistinctelements.Thearrangementoftheelementsinasubsetisirrelevant.Eachsubsetiscalledacombination.Thesubsets{a,b}and{b,a}areidentical.LetCn,k

denotethenumberofcombinationsofnelementstakenkatatime.HowtocalculateCn,k?WecanconstructalistofallPn,kpermutationswithkelmementsoutofnelementsasfollows:First,aparticularcombinationofkelmentsisselected.Thesekelementscanbepermutatedink!ways.Thenumberofpermutationscanbecalculatedby

k!Cn,kSoExample1.8.1SelectingACommitteeAcommitteeof8peopleistobeselectedfromagroupof20people.ThenumberofdifferentwaysofselectingthecommitteeisTheProbabilityofAUnionofEventsThesamplespaceSmaycontaineitherafinitenumberofesoraninfinitenumber.Wewillstudytheprobabilityoftheunionofnevents.Iftheeventsaredisjoint,ForanytwoeventsA1andA2,Theorem1.ForanythreeeventsA1,A2andA3,ProofTheorem.ForanyneventsA1,...,

An,TheCollector’sProblemTheCollector’sProblem Supposethateachpackageofbubblegumcontainsthepictureofabasketballplayer;thatthepicturesofrdifferentplayersareused;thatthepictureofeachplayerisequallylikelytobeplacedinanygivenpackageofgum;andthatpicturesareplacedindifferentpackagesindependentlyofeachother.Whatistheprobabilitypthatapersonwhobuysnpackagesofgum()willobtainacompletesetofrdifferentpictures.Thecomplementaryeventisthatthepictureofatleastoneplayerismissing.LetAidenotetheeventthatthepictureofplaye

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論