




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省名校新高二數(shù)學第一學期期末預測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.從直線上動點作圓的兩條切線,切點分別為、,則最大時,四邊形(為坐標原點)面積是()A. B.C. D.2.已知橢圓及以下3個函數(shù):①;②;③,其中函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有()A.0個 B.1個C.2個 D.3個3.已知為等比數(shù)列的前n項和,,,則()A.30 B.C. D.30或4.如圖,在正方體中,點,分別是面對角線與的中點,若,,,則()A. B.C. D.5.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點為M,設=,=,=,則=()A.++ B.+C.++ D.+6.中,內角A,B,C的對邊分別為a,b,c,若,則等于()A. B.C. D.7.已知雙曲線=1的一條漸近線方程為x-4y=0,其虛軸長為()A.16 B.8C.2 D.18.直三棱柱ABC-A1B1C1中,△ABC為等邊三角形,AA1=AB,M是A1C1的中點,則AM與平面所成角的正弦值為()A. B.C. D.9.已知等比數(shù)列的各項均為正數(shù),且,則()A. B.C. D.10.雙曲線(,)的一條漸近線的傾斜角為,則離心率為()A. B.C.2 D.411.已知雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,則雙曲線的標準方程為()A.=1 B.=1C.=1 D.=112.設等差數(shù)列的前n項和為,且,則()A.64 B.72C.80 D.144二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在區(qū)間上單調遞減,則實數(shù)的取值范圍是____________.14.若向量滿足,則_________.15.已知雙曲線與橢圓有公共的左、右焦點分別為,,以線段為直徑的圓與雙曲線C及其漸近線在第一象限內分別交于M,N兩點,且線段的中點在另一條漸近線上,則的面積為___________.16.圓錐的高為1,底面半徑為,則過圓錐頂點的截面面積的最大值為____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知復數(shù),其中i是虛數(shù)單位,m為實數(shù)(1)當復數(shù)z為純虛數(shù)時,求m的值;(2)當復數(shù)在復平面內對應的點位于第三象限時,求m的取值范圍18.(12分)已知滿足,.(1)求證:是等差數(shù)列,求的通項公式;(2)若,的前項和是,求證:.19.(12分)已知橢圓的離心率是,且過點.(1)求橢圓的標準方程;(2)若直線與橢圓交于A、B兩點,線段的中點為,為坐標原點,且,求面積的最大值.20.(12分)已知等比數(shù)列的首項,公比,在中每相鄰兩項之間都插入3個正數(shù),使它們和原數(shù)列的數(shù)一起構成一個新的等比數(shù)列.(1)求數(shù)列的通項公式;(2)記數(shù)列前n項的乘積為,試問:是否有最大值?如果是,請求出此時n以及最大值;若不是,請說明理由.21.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)求函數(shù)在區(qū)間上的最大值與最小值.22.(10分)已知橢圓的離心率為,直線與橢圓C相切于點(1)求橢圓C的方程;(2)已知直線與橢圓C交于不同的兩點M,N,與直線交于點Q(P,Q,M,N均不重合),記的斜率分別為,若.證明:為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】分析可知當時,最大,計算出、,進而可計算得出四邊形(為坐標原點)面積.【詳解】圓的圓心為坐標原點,連接、、,則,設,則,,則,當取最小值時,,此時,,,,故,此時,.故選:B.2、C【解析】由橢圓的幾何性質可得橢圓的圖像關于原點對稱,因為函數(shù),函數(shù)為奇函數(shù),其圖像關于原點對稱,則①②滿足題意,對于函數(shù)在軸右側時,,只有時,,即函數(shù)在軸右側的圖像顯然不能等分橢圓在軸右側的圖像的面積,又函數(shù)為偶函數(shù),其圖像關于軸對稱,則函數(shù)在軸左側的圖像顯然也不能等分橢圓在軸左側的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,得解.【詳解】解:因為橢圓的圖像關于原點對稱,對于①,函數(shù)為奇函數(shù),其圖像關于原點對稱,即可知的圖象能等分該橢圓面積;對于②,函數(shù)為奇函數(shù),其圖像關于原點對稱,即可知的圖象能等分該橢圓面積;對于③,對于函數(shù)在軸右側時,,只有時,,即函數(shù)在軸右側的圖像(如圖)顯然不能等分橢圓在軸右側的圖像的面積,又函數(shù)為偶函數(shù),其圖像關于軸對稱,則函數(shù)在軸左側的圖像顯然也不能等分橢圓在軸左側的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,即函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有2個,故選C.【點睛】本題考查了橢圓的幾何性質、函數(shù)的奇偶性及函數(shù)的對稱性,重點考查了函數(shù)的性質,屬基礎題.3、A【解析】利用等比數(shù)列基本量代換代入,列方程組,即可求解.【詳解】由得,則等比數(shù)列的公比,則得,令,則即,解得或(舍去),,則故選:A4、D【解析】由空間向量運算法則得,利用向量的線性運算求出結果.【詳解】因為點,分別是面對角線與的中點,,,,所以故選:D.5、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B6、A【解析】由題得,進而根據余弦定理求解即可.【詳解】解:依題意,即,所以,所以,由于,所以故選:A7、C【解析】根據雙曲線的漸近線方程的特點,結合虛軸長的定義進行求解即可.【詳解】因為雙曲線=1的一條漸近線方程為x-4y=0,所以,因此該雙曲線的虛軸長為,故選:C8、B【解析】取的中點,以為原點,所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,即可根據線面角的向量公式求出【詳解】如圖所示,取的中點,以為原點,所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,不妨設,則,所以,平面的一個法向量為設AM與平面所成角為,向量與所成的角為,所以,即AM與平面所成角的正弦值為故選:B9、B【解析】利用對數(shù)的運算性質,結合等比數(shù)列的性質可求得結果.【詳解】是各項均為正數(shù)的等比數(shù)列,,,,.故選:B10、C【解析】根據雙曲線方程寫出漸近線方程,得出,進而可求出雙曲線的離心率.【詳解】因為雙曲線的漸近線方程為,又其中一條漸近線的傾斜角為,所以,則,所以該雙曲線離心率為.故選:C.11、D【解析】根據雙曲線的性質求解即可.【詳解】雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.12、B【解析】利用等差數(shù)列下標和性質,求得,再用等差數(shù)列前項和公式即可求解.【詳解】根據等差數(shù)列的下標和性質,,解得,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求解定義域,由導函數(shù)小于0得到遞減區(qū)間,進而得到不等式組,求出實數(shù)的取值范圍.【詳解】顯然,且,由,以及考慮定義域x>0,解得:.在區(qū)間,上單調遞減,∴,解得:.故答案為:14、【解析】根據題目條件,利用模的平方可以得出答案【詳解】∵∴∴.故答案為:.15、【解析】求出橢圓焦點坐標,即雙曲線焦點坐標,即雙曲線的半焦距,再求出點坐標,利用中點在漸近線上得出的關系式,從而求得,然后可計算面積【詳解】由題意橢圓中,即,以線段為直徑的圓的方程為,由,解得(取第一象限交點坐標),,雙曲線的不在第一象限的漸近線方程為,,的中點坐標為,它在漸近線上,所以,化簡得,又,所以,雙曲線方程為,則得,所以故答案為:16、2【解析】求出圓錐軸截面頂角大小,判斷并求出所求面積最大值【詳解】如圖,是圓錐軸截面,是一條母線,設軸截面頂角為,因為圓錐的高為1,底面半徑為,所以,,所以,,設圓錐母線長為,則,截面的面積為,因為,所以時,故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)4(2)【解析】(1)根據純虛數(shù),實部為零,虛部不為零列式即可;(2)根據第三象限,實部小于零,虛部小于零,列式即可.【小問1詳解】因為為純虛數(shù),所以解得或,且且綜上可得,當為純虛數(shù)時;【小問2詳解】因為在復平面內對應的點位于第三象限,解得或,且即,故的取值范圍為.18、(1)證明見解析,(2)證明見解析【解析】(1)在等式兩邊同時除以,結合等差數(shù)列的定義可證得數(shù)列為等差數(shù)列,確定該數(shù)列的首項和公差,可求得的表達式;(2)求得,利用裂項相消法求得,即可證得原不等式成立.【小問1詳解】解:在等式兩邊同時除以可得且,所以,數(shù)列是以為首項,以為公差的等差數(shù)列,則,因此,.【小問2詳解】證明:,所以,.故原不等式得證.19、(1);(2)2.【解析】(1)根據已知條件列出關于a、b、c的方程組即可求得橢圓標準方程;(2)直線l和x軸垂直時,根據已知條件求出此時△AOB面積;直線l和x軸不垂直時,設直線方程為點斜式y(tǒng)=kx+t,代入橢圓方程得二次方程,結合韋達定理和弦長得k和t關系,表示出△AOB的面積,結合基本不等式即可求解三角形面積最值.【小問1詳解】由題知,解得,∴橢圓的標準方程為.【小問2詳解】當軸時,位于軸上,且,由可得,此時;當不垂直軸時,設直線的方程為,與橢圓交于,,由,得.得,,從而已知,可得.∵.設到直線的距離為,則,結合化簡得此時的面積最大,最大值為2.當且僅當即時取等號,綜上,的面積的最大值為2.20、(1)(2)當或時,有最大值.【解析】(1)利用等比數(shù)列通項公式求解即可;(2)求出數(shù)列的前n項的乘積為,利用二次函數(shù)的性質求最值即可.【小問1詳解】由已知得,數(shù)列首項,,設數(shù)列的公比為,即∴即,【小問2詳解】,即當或5時,有最大值.21、(1)(2),【解析】(1)根據導數(shù)的幾何意義即可求解;(2)根據導數(shù)的正負判斷f(x)的單調性,根據其單調性即可求最大值和最小值.【小問1詳解】,切點為(1,-2),∵,∴切線斜率,切線方程為;【小問2詳解】令,解得,1200極大值極小值2∵,,∴當時,,.22、(1);(2)證明見解析.【解析】(1)根據橢圓離心率和橢圓經過的點建立方程組,求解方程組可得橢圓的方程;(2)先根據相切求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 腎部專業(yè)知識培訓課件
- 中醫(yī)特色護理個案
- 老年人知識培訓課件
- 美容師面診知識培訓課件
- 綠化工藝知識培訓課件
- 給排水專業(yè)知識培訓課件
- 管理咨詢知識分享
- 植物遺傳資源利用試題及答案
- 二零二五專賣店裝修協(xié)議合同
- 二零二五版對外貿易代理合同
- 2022年初中歷史課程標準電子版
- 腔內心電圖經外周中心靜脈導管picc尖端定位技術
- 白酒基礎知識考試題庫300題(含單選、多選、判斷)
- The+Little+Woman英文名著《小婦人》整本書閱讀指導課件
- 高等學校學生學籍信息更改審批表
- 慢性胃炎中醫(yī)癥候評分表
- 學生心理健康檔案表格
- 臨時用電施工組織設計(總體)
- 2023年神東煤炭集團招聘筆試題庫及答案解析
- YY/T 1723-2020高通量基因測序儀
- GB/T 40276-2021柔巾
評論
0/150
提交評論