版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆四川省成都市雙流區(qū)高二數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在空間四邊形OABC中,,,,點(diǎn)N為BC的中點(diǎn),點(diǎn)M在線(xiàn)段OA上,且OM=2MA,則()A. B.C. D.2.過(guò)拋物線(xiàn)焦點(diǎn)的直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),,拋物線(xiàn)的準(zhǔn)線(xiàn)與軸交于點(diǎn),則的面積為()A. B.C. D.3.已知,是橢圓C的兩個(gè)焦點(diǎn),P是C上的一點(diǎn),若以為直徑的圓過(guò)點(diǎn)P,且,則C的離心率為()A. B.C. D.4.設(shè)變量,滿(mǎn)足約束條件,則的最大值為()A.1 B.6C.10 D.135.將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再將所得圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則()A. B.C. D.6.袋子中有四個(gè)小球,分別寫(xiě)有“文、明、中、國(guó)”四個(gè)字,有放回地從中任取一個(gè)小球,直到“中”“國(guó)”兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“文、明、中、國(guó)”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):由此可以估計(jì),恰好第三次就停止的概率為()A. B.C. D.7.?dāng)?shù)列滿(mǎn)足,對(duì)任意,都有,則()A. B.C. D.8.已知是公差為3的等差數(shù)列.若,,成等比數(shù)列,則的前10項(xiàng)和()A.165 B.138C.60 D.309.下列說(shuō)法正確的個(gè)數(shù)有()(?。┟}“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實(shí)根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)10.箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,設(shè)事件=“至少有一件次品”,則的對(duì)立事件為()A.至多兩件次品 B.至多一件次品C.沒(méi)有次品 D.至少一件次品11.已知空間向量,,,下列命題中正確的個(gè)數(shù)是()①若與共線(xiàn),與共線(xiàn),則與共線(xiàn);②若,,非零且共面,則它們所在的直線(xiàn)共面;⑧若,,不共面,那么對(duì)任意一個(gè)空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線(xiàn),向量,則可以構(gòu)成空間的一個(gè)基底.A.0 B.1C.2 D.312.已知直線(xiàn)l的方向向量,平面α的一個(gè)法向量為,則直線(xiàn)l與平面α的位置關(guān)系是()A.平行 B.垂直C.在平面內(nèi) D.平行或在平面內(nèi)二、填空題:本題共4小題,每小題5分,共20分。13.定義在R上的函數(shù)滿(mǎn)足,其中為自然對(duì)數(shù)的底數(shù),,則滿(mǎn)足的a的取值范圍是__________.14.若,滿(mǎn)足不等式組,則的最大值為_(kāi)_______.15.“”是“”的________條件.(從“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中選擇一項(xiàng)填空.)16.雙曲線(xiàn)的焦點(diǎn)在圓上,圓O與雙曲線(xiàn)C的漸近線(xiàn)在第一、四象限分別交于P,Q兩點(diǎn)滿(mǎn)足(其中O是坐標(biāo)原點(diǎn)),則的面積是_________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知單調(diào)遞增的等比數(shù)列滿(mǎn)足:,且是,的等差中項(xiàng)(1)求數(shù)列的通項(xiàng)公式;(2)若,,求18.(12分)已知命題;命題.(1)若p是q的充分條件,求m的取值范圍;(2)當(dāng)時(shí),已知是假命題,是真命題,求x的取值范圍.19.(12分)在①直線(xiàn)l:是拋物線(xiàn)C的準(zhǔn)線(xiàn);②F是橢圓的一個(gè)焦點(diǎn);③,對(duì)于C上的點(diǎn)A,的最小值為;在以上三個(gè)條件中任選一個(gè),填到下面問(wèn)題中的橫線(xiàn)處,并完成解答.已知拋物線(xiàn)C:的焦點(diǎn)為F,滿(mǎn)足_____(1)求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;(2)是拋物線(xiàn)C上在第一象限內(nèi)的一點(diǎn),直線(xiàn):與C交于M,N兩點(diǎn),若的面積為,求m的值20.(12分)如圖,在三棱柱中,側(cè)棱垂直于底面,分別是的中點(diǎn)(1)求證:平面平面;(2)求證:平面;(3)求三棱錐體積21.(12分)如圖,在四棱錐中,底面四邊形為角梯形,,,,O為的中點(diǎn),,.(1)證明:平面;(2)若,求平面與平面所成夾角的余弦值.22.(10分)如圖,在四棱錐中,平面平面,底面是菱形,E為的中點(diǎn)(1)證明:(2)已知,求二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用空間向量的線(xiàn)性運(yùn)算即可求解.【詳解】解:∵N為BC的中點(diǎn),點(diǎn)M在線(xiàn)段OA上,且OM=2MA,且,,,故選:D.2、B【解析】畫(huà)出圖形,利用已知條件結(jié)合拋物線(xiàn)的定義求解邊長(zhǎng)CF,BK,然后求解三角形的面積即可【詳解】如圖,設(shè)拋物線(xiàn)的準(zhǔn)線(xiàn)為,過(guò)作于,過(guò)作于,過(guò)作于,設(shè),則根據(jù)拋物線(xiàn)的定義可得,,,的面積為,故選:.3、B【解析】根據(jù)題意,在中,設(shè),則,進(jìn)而根據(jù)橢圓定義得,進(jìn)而可得離心率.【詳解】在中,設(shè),則,又由橢圓定義可知?jiǎng)t離心率,故選:B.【點(diǎn)睛】本題考查橢圓離心率的計(jì)算,考查運(yùn)算求解能力,是基礎(chǔ)題.本題解題的關(guān)鍵在于根據(jù)已知條件,結(jié)合橢圓的定義,在焦點(diǎn)三角形中根據(jù)邊角關(guān)系求解.4、C【解析】畫(huà)出約束條件表示的平面區(qū)域,將變形為,可得需要截距最小,觀察圖象,可得過(guò)點(diǎn)時(shí)截距最小,求出點(diǎn)A坐標(biāo),代入目標(biāo)式即可.【詳解】解:畫(huà)出約束條件表示的平面區(qū)域如圖中陰影部分:又,即,要取最大值,則在軸上截距要最小,觀察圖象可得過(guò)點(diǎn)時(shí)截距最小,由,得,則.故選:C.5、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個(gè)單位長(zhǎng)度,得到的圖象;第二步,圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到的圖象,即的圖象.故.故選:A6、A【解析】利用古典概型的概率公式求解.【詳解】因?yàn)殡S機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):,其中恰好第三次就停止包含的基本事件有:023,123,132共3個(gè),所以由此可以估計(jì),恰好第三次就停止的概率為,故選:A7、C【解析】首先根據(jù)題設(shè)條件可得,然后利用累加法可得,所以,最后利用裂項(xiàng)相消法求和即可.【詳解】由,得,則,所以,.故選:C.【點(diǎn)睛】本題考查累加法求數(shù)列通項(xiàng),考查利用錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,考查邏輯思維能力和計(jì)算能力,屬于??碱}.8、A【解析】由等差數(shù)列的定義與等比數(shù)列的性質(zhì)求得首項(xiàng),然后由等差數(shù)列的前項(xiàng)和公式計(jì)算【詳解】因?yàn)?,,成等比?shù)列,所以,所以,解得,所以故選:A9、B【解析】根據(jù)四種命題的結(jié)構(gòu)特征可判斷(?。áぃ┑恼`,根據(jù)全稱(chēng)命題的否定形式可判斷(ⅱ)的正誤,根據(jù)判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(?。╁e(cuò)誤.“,”的否定為“,使得”,故(ⅱ)正確,當(dāng)時(shí),,故有實(shí)根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯(cuò)誤.故選:B10、C【解析】利用對(duì)立事件的定義,分析即得解【詳解】箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,可能出現(xiàn):“兩件次品”,“一件次品,一件正品”,“兩件正品”三種情況根據(jù)對(duì)立事件的定義,事件=“至少有一件次品”其對(duì)立事件為:“兩件正品”,即”沒(méi)有次品“故選:C11、B【解析】用向量共線(xiàn)或共面的基本定理即可判斷.【詳解】若與,與共線(xiàn),,則不能判定,故①錯(cuò)誤;若非零向量共面,則向量可以在一個(gè)與組成的平面平行的平面上,故②錯(cuò)誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個(gè)基底,故④錯(cuò)誤;故選:C.12、D【解析】根據(jù)題意,結(jié)合線(xiàn)面位置關(guān)系的向量判斷方法,即可求解.【詳解】根據(jù)題意,因?yàn)?,所以,所以直線(xiàn)l與平面α的位置關(guān)系是平行或在平面內(nèi)故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè),求出其導(dǎo)數(shù)結(jié)合條件得出在上單調(diào)遞減,將問(wèn)題轉(zhuǎn)化為求解,由的單調(diào)性可得答案.【詳解】設(shè),則由,則所以在上單調(diào)遞減.又由,即,即,所以故答案為:14、10【解析】作出不等式區(qū)域,如圖所示:目標(biāo)最大值,即為平移直線(xiàn)的最大縱截距,當(dāng)直線(xiàn)經(jīng)過(guò)點(diǎn)時(shí)最大為10.故答案為10.點(diǎn)睛:本題主要考查線(xiàn)性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移、三求”:(1)作出可行域(一定要注意是實(shí)線(xiàn)還是虛線(xiàn));(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.15、充分不必要【解析】由不等式的性質(zhì)可知,由得,反之代入進(jìn)行驗(yàn)證,然后根據(jù)充分性與必要性的定義進(jìn)行判斷,即可得出所要的答案【詳解】解:由不等式的性質(zhì)可知,由得,故“”成立可推出“”,而,當(dāng),則,所以“”不能保證“”,故“”是“”成立的充分不必要條件.故答案為:充分不必要【點(diǎn)睛】本題考查充分條件與必要條件的判斷,結(jié)合不等式的性質(zhì),屬于較簡(jiǎn)單題型16、【解析】根據(jù)雙曲線(xiàn)的焦點(diǎn)在圓上可求出的值,設(shè)線(xiàn)段與軸的交點(diǎn)坐標(biāo)為,進(jìn)而根據(jù)求出的坐標(biāo),代入圓中,求出的值,即可求出結(jié)果.【詳解】因?yàn)殡p曲線(xiàn)的焦點(diǎn)在圓上,所以,設(shè)線(xiàn)段與軸的交點(diǎn)坐標(biāo)為,結(jié)合雙曲線(xiàn)與圓的對(duì)稱(chēng)性可知為線(xiàn)段的中點(diǎn),又因?yàn)?,即,且,則,又因?yàn)橹本€(xiàn)的方程為,所以,又因?yàn)樵趫A上,所以,又因?yàn)?,則,所以,從而,故,故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】(1)將已知條件整理變形為等比數(shù)列的首項(xiàng)和公比來(lái)表示,解方程組得到基本量,可得到通項(xiàng)公式(2)化簡(jiǎn)通項(xiàng)得,根據(jù)特點(diǎn)求和時(shí)采用錯(cuò)位相減法求解試題解析:(1)設(shè)等比數(shù)列的首項(xiàng)為,公比為,依題意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又單調(diào)遞增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考點(diǎn):1.等比數(shù)列通項(xiàng)公式;2.錯(cuò)位相減求和18、(1);(2).【解析】(1)解不等式組即得解;(2)由題得p、q一真一假,分兩種情況討論得解.【小問(wèn)1詳解】解:由題意知p是q的充分條件,即p集合包含于q集合,有;【小問(wèn)2詳解】解:當(dāng)時(shí),有,由題意知,p、q一真一假,當(dāng)p真q假時(shí),,當(dāng)p假q真時(shí),,綜上,x的取值范圍為19、(1)(2)或.【解析】(1)選條件①,由準(zhǔn)線(xiàn)方程得參數(shù),從而得拋物線(xiàn)方程;選條件②,由橢圓的焦點(diǎn)坐標(biāo)與拋物線(xiàn)焦點(diǎn)坐標(biāo)相同求得得拋物線(xiàn)方程;選條件③,由F,A,B三點(diǎn)共線(xiàn)時(shí),,再由兩點(diǎn)間距離公式求得得拋物線(xiàn)方程;(2)求出點(diǎn)坐標(biāo),由點(diǎn)到直線(xiàn)距離公式求得到直線(xiàn)的距離,設(shè),,直線(xiàn)方程代入拋物線(xiàn)方程,判別式大于0保證相交,由韋達(dá)定理得,由弦長(zhǎng)公式得弦長(zhǎng),再計(jì)算出三角形的面積后可解得【小問(wèn)1詳解】選條件①:由準(zhǔn)線(xiàn)方程為知,所以?huà)佄锞€(xiàn)C的方程為選條件②:因?yàn)閽佄锞€(xiàn)的焦點(diǎn)坐標(biāo)為所以由已知得橢圓的一個(gè)焦點(diǎn)為.所以,又,所以,所以?huà)佄锞€(xiàn)C的方程為選條件③:由題意可知得,當(dāng)F,A,B三點(diǎn)共線(xiàn)時(shí),,由兩點(diǎn)間距離公式,解得,所以?huà)佄锞€(xiàn)C的方程為.【小問(wèn)2詳解】把代入方程,可得,設(shè),,聯(lián)立,消去y可得,由,解得,又知,,所以,由到直線(xiàn)的距離為,所以,即,解得或經(jīng)檢驗(yàn)均滿(mǎn)足,所以m的值為或.20、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)【解析】(1)由直線(xiàn)與平面垂直證明直線(xiàn)與平行的垂直;(2)證明直線(xiàn)與平面平行;(3)求三棱錐的體積就用體積公式.(1)在三棱柱中,底面ABC,所以AB,又因?yàn)锳B⊥BC,所以AB⊥平面,因?yàn)锳B平面,所以平面平面.(2)取AB中點(diǎn)G,連結(jié)EG,F(xiàn)G,因?yàn)镋,F(xiàn)分別是、的中點(diǎn),所以FG∥AC,且FG=AC,因?yàn)锳C∥,且AC=,所以FG∥,且FG=,所以四邊形為平行四邊形,所以EG,又因?yàn)镋G平面ABE,平面ABE,所以平面.(3)因?yàn)?AC=2,BC=1,AB⊥BC,所以AB=,所以三棱錐的體積為:==.考點(diǎn):本小題主要考查直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面的垂直與平行的證明;考查幾何體的體積的求解等基礎(chǔ)知識(shí),考查同學(xué)們的空間想象能力、推理論證能力、運(yùn)算求解能力、邏輯推理能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想21、(1)證明見(jiàn)解析;(2).【解析】(1)連接,可通過(guò)證明,得平面;(2)以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,求出平面的法向量和平面的法向量,通過(guò)向量的夾角公式可得答案.【小問(wèn)1詳解】如圖,連接,在中,由可得.因?yàn)?,,所以,,因?yàn)?,,,所以,所?又因?yàn)?,平面,,所以平?【小問(wèn)2詳解】由(1)可知,,,兩兩垂直,以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,,.由,有,則,設(shè)平面的法向量為,由,,有,取,則,,可得平面的一個(gè)法向量為.設(shè)平面的法向量為,由,,有,取,則,,可得平面的一個(gè)法向量為.由,,,可得平面與平面所成夾角的余弦值為.22、(1)詳見(jiàn)解析(2)【解析】(1)利用垂直關(guān)系,轉(zhuǎn)化為證明線(xiàn)面垂直
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海市靜安區(qū)2025屆高三一模語(yǔ)文試卷
- 2025年度個(gè)人自建廠(chǎng)房產(chǎn)權(quán)交易合同范本4篇
- 2025個(gè)人退伙經(jīng)營(yíng)合同(物流配送行業(yè)專(zhuān)用)4篇
- 2025年度鋼構(gòu)建筑綠色施工監(jiān)理合同
- 2025-2030全球鐵基超塑形狀記憶合金行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球輸注穿刺耗材行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國(guó)高純度氫氧化鈷行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年度鋼管及配件進(jìn)出口代理合同范本2篇
- 2025年個(gè)人二手車(chē)買(mǎi)賣(mài)協(xié)議示范文本2篇
- 2025版教育培訓(xùn)機(jī)構(gòu)推廣服務(wù)合同模板3篇
- 道路瀝青工程施工方案
- 2025年度正規(guī)離婚協(xié)議書(shū)電子版下載服務(wù)
- 《田口方法的導(dǎo)入》課件
- 春節(jié)后安全生產(chǎn)開(kāi)工第一課
- 內(nèi)陸?zhàn)B殖與水產(chǎn)品市場(chǎng)營(yíng)銷(xiāo)策略考核試卷
- 電力電纜工程施工組織設(shè)計(jì)
- 2024年重慶市中考數(shù)學(xué)試題B卷含答案
- 醫(yī)生給病人免責(zé)協(xié)議書(shū)(2篇)
- 票據(jù)業(yè)務(wù)居間合同模板
- 承包鋼板水泥庫(kù)合同范本(2篇)
- 頸椎骨折的護(hù)理常規(guī)課件
評(píng)論
0/150
提交評(píng)論