2024屆湖南省會(huì)同一中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁(yè)
2024屆湖南省會(huì)同一中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁(yè)
2024屆湖南省會(huì)同一中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁(yè)
2024屆湖南省會(huì)同一中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁(yè)
2024屆湖南省會(huì)同一中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆湖南省會(huì)同一中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過(guò)雙曲線的右焦點(diǎn)有一條弦是左焦點(diǎn),那么的周長(zhǎng)為()A.28 B.C. D.2.已知平面內(nèi)有一點(diǎn),平面的一個(gè)法向量為,則下列四個(gè)點(diǎn)中在平面內(nèi)的是()A. B.C. D.3.已知直線l1:mx-2y+1=0,l2:x-(m-1)y-1=0,則“m=2”是“l(fā)1平行于l2”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件4.在等差數(shù)列中,,且構(gòu)成等比數(shù)列,則公差等于()A.0 B.3C. D.0或35.已知直線為拋物線的準(zhǔn)線,直線經(jīng)過(guò)拋物線的焦點(diǎn),與拋物線交于點(diǎn),則的最小值為()A. B.C.4 D.86.已知圓:和點(diǎn),是圓上一點(diǎn),線段的垂直平分線交于點(diǎn),則點(diǎn)的軌跡方程是:()A. B.C. D.7.在平面上給定相異兩點(diǎn),設(shè)點(diǎn)在同一平面上且滿(mǎn)足,當(dāng)且時(shí),點(diǎn)的軌跡是一個(gè)圓,這個(gè)軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱(chēng)這個(gè)圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點(diǎn),為雙曲線的虛軸端點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.8.直線的傾斜角的取值范圍是()A. B.C. D.9.已知拋物線y2=4x的焦點(diǎn)為F,定點(diǎn),M為拋物線上一點(diǎn),則|MA|+|MF|的最小值為()A.3 B.4C.5 D.610.已知命題,,若是一個(gè)充分不必要條件,則的取值范圍是()A. B.C. D.11.已知等比數(shù)列的前項(xiàng)和為,則關(guān)于的方程的解的個(gè)數(shù)為()A.0 B.1C.無(wú)數(shù)個(gè) D.0或無(wú)數(shù)個(gè)12.已知A,B,C,D是同一球面上的四個(gè)點(diǎn),其中是正三角形,平面,,則該球的表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是雙曲線的左焦點(diǎn),圓與雙曲線在第一象限的交點(diǎn),若的中點(diǎn)在雙曲線的漸近線上,則此雙曲線的離心率是___________.14.若命題“”是假命題,則a的取值范圍是_______.15.已知函數(shù),則曲線在點(diǎn)處的切線方程為_(kāi)__________16.已知命題恒成立;,若p,均為真,則實(shí)數(shù)a的取值范圍__________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某快餐配送平臺(tái)針對(duì)外賣(mài)員送餐準(zhǔn)點(diǎn)情況制定了如下的考核方案:每一單自接單后在規(guī)定時(shí)間內(nèi)送達(dá)、延遲5分鐘內(nèi)送達(dá)、延遲5至10分鐘送達(dá)、其他延遲情況,分別評(píng)定為四個(gè)等級(jí),各等級(jí)依次獎(jiǎng)勵(lì)3元、獎(jiǎng)勵(lì)0元、罰款3元、罰款6元.假定評(píng)定為等級(jí)的概率分別是.(1)若某外賣(mài)員接了一個(gè)訂單,求其不被罰款的概率;(2)若某外賣(mài)員接了兩個(gè)訂單,且兩個(gè)訂單互不影響,求這兩單獲得的獎(jiǎng)勵(lì)之和為3元的概率.18.(12分)已知點(diǎn)是橢圓上的一點(diǎn),且橢圓的離心率.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)兩動(dòng)點(diǎn)在橢圓上,總滿(mǎn)足直線與的斜率互為相反數(shù),求證:直線的斜率為定值.19.(12分)阿基米德(公元前年—公元前年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸與短半軸的乘積.已知平面直角坐標(biāo)系中,橢圓:的面積為,兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成等邊三角形.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線與交于不同的兩點(diǎn),求面積的最大值.20.(12分)在等差數(shù)列中,,(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和21.(12分)已知橢圓C的兩焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為6⑴求橢圓C的標(biāo)準(zhǔn)方程;⑵已知過(guò)點(diǎn)(0,2)且斜率為1的直線交橢圓C于A、B兩點(diǎn),求線段AB的長(zhǎng)度22.(10分)已知是拋物線的焦點(diǎn),直線交拋物線于、兩點(diǎn).(1)若直線過(guò)點(diǎn)且,求;(2)若平分線段,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)雙曲線方程得,,由雙曲線的定義,證出,結(jié)合即可算出△的周長(zhǎng)【詳解】雙曲線方程為,,根據(jù)雙曲線的定義,得,,,,相加可得,,,因此△的周長(zhǎng),故選:C2、A【解析】設(shè)所求點(diǎn)的坐標(biāo)為,由,逐一驗(yàn)證選項(xiàng)即可【詳解】設(shè)所求點(diǎn)的坐標(biāo)為,則,因?yàn)槠矫娴囊粋€(gè)法向量為,所以,,對(duì)于選項(xiàng)A,,對(duì)于選項(xiàng)B,,對(duì)于選項(xiàng)C,,對(duì)于選項(xiàng)D,故選:A3、C【解析】利用兩直線平行的等價(jià)條件求得m,再結(jié)合充分必要條件進(jìn)行判斷即可.【詳解】由直線l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,經(jīng)驗(yàn)證,當(dāng)m=-1時(shí),直線l1與l2重合,舍去,所以“m=2”是“l(fā)1平行于l2”的充要條件,故選C.【點(diǎn)睛】本題考查兩直線平行的條件,準(zhǔn)確計(jì)算是關(guān)鍵,注意充分必要條件的判斷是基礎(chǔ)題4、D【解析】根據(jù),且構(gòu)成等比數(shù)列,利用“”求解.【詳解】設(shè)等差數(shù)列的公差為d,因?yàn)椋覙?gòu)成等比數(shù)列,所以,解得,故選:D5、D【解析】先求拋物線的方程,再聯(lián)立直線方程和拋物線方程,由弦長(zhǎng)公式可求的最小值.【詳解】因?yàn)橹本€為拋物線的準(zhǔn)線,故即,故拋物線方程為:.設(shè)直線,則,,而,當(dāng)且僅當(dāng)?shù)忍?hào)成立,故的最小值為8,故選:D.6、B【解析】先由在線段的垂直平分線上得出,再由題意得出,進(jìn)而由橢圓定義可求出點(diǎn)的軌跡方程.【詳解】如圖,因?yàn)樵诰€段的垂直平分線上,所以,又點(diǎn)在圓上,所以,因此,點(diǎn)在以、為焦點(diǎn)的橢圓上.其中,,則.從而點(diǎn)的軌跡方程是.故選:B.7、C【解析】先求動(dòng)點(diǎn)的軌跡方程,再根據(jù)面積的最大值求得,根據(jù)的面積最小值求,由此可求雙曲線的離心率.【詳解】設(shè),,,依題意得,即,兩邊平方化簡(jiǎn)得,所以動(dòng)點(diǎn)的軌跡是圓心為,半徑的圓,當(dāng)位于圓的最高點(diǎn)時(shí)的面積最大,所以,解得;當(dāng)位于圓的最左端時(shí)的面積最小,所以,解得,故雙曲線的離心率為.故選:C.8、A【解析】由直線方程求得直線斜率的范圍,再由斜率等于傾斜角的正切值可得直線的傾斜角的取值范圍.【詳解】∵直線的斜率,,設(shè)直線的傾斜角為,則,解得.故選:A.9、B【解析】作出圖象,過(guò)點(diǎn)M作準(zhǔn)線的垂線,垂足為H,結(jié)合圖形可得當(dāng)且僅當(dāng)三點(diǎn)M,A,H共線時(shí)|MA|+|MH|最小,求解即可【詳解】過(guò)點(diǎn)M作準(zhǔn)線的垂線,垂足為H,由拋物線的定義可知|MF|=|MH|,則問(wèn)題轉(zhuǎn)化為|MA|+|MH|的最小值,結(jié)合圖形可得當(dāng)且僅當(dāng)三點(diǎn)M,A,H共線時(shí)|MA|+|MH|最小,其最小值為.故選:B10、A【解析】先化簡(jiǎn)命題p,q,再根據(jù)是的一個(gè)充分不必要條件,由q求解.【詳解】因?yàn)槊},或,又是的一個(gè)充分不必要條件,所以,解得,所以的取值范圍是,故選:A11、D【解析】利用等比數(shù)列的求和公式討論公比的取值即得.【詳解】設(shè)等比數(shù)列的公比為,當(dāng)時(shí),,因?yàn)椋詿o(wú)解,即方程的解的個(gè)數(shù)為0,當(dāng)時(shí),,所以時(shí),方程有無(wú)數(shù)個(gè)偶數(shù)解,當(dāng)時(shí),方程無(wú)解,綜上,關(guān)于的方程的解的個(gè)數(shù)為0或無(wú)數(shù)個(gè).故選:D.12、C【解析】由題意畫(huà)出幾何體的圖形,把、、、擴(kuò)展為三棱柱,上下底面中心連線的中點(diǎn)與的距離為球的半徑,由此能求出球的表面積【詳解】把、、、擴(kuò)展為三棱柱,上下底面中心連線的中點(diǎn)與的距離為球的半徑,,,是正三角形,,,球的表面積為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】計(jì)算點(diǎn)漸近線的距離,從而得,由勾股定理計(jì)算,由雙曲線定義列式,從而計(jì)算得,即可計(jì)算出離心率.【詳解】設(shè)雙曲線右焦點(diǎn)為,因?yàn)榈闹悬c(diǎn)在雙曲線的漸近線上,由可知,,因?yàn)闉橹悬c(diǎn),所以,所以,即垂直平分線段,所以到漸近線的距離為,可得,所以,由雙曲線定義可知,,即,所以,所以.故答案為:【點(diǎn)睛】雙曲線的離心率是橢圓最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)14、【解析】依題意可得是真命題,參變分離得到,再利用基本不等式計(jì)算可得;【詳解】解:因?yàn)槊}“”是假命題,所以命題“”是真命題,即,所以,因?yàn)?,?dāng)且僅當(dāng)即時(shí)取等號(hào),所以,即故答案:15、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,利用點(diǎn)斜式求切線方程.【詳解】解:因,所以,又故切線方程為,整理為,故答案為:16、【解析】根據(jù)題意得到命題為真命題,為假命題,結(jié)合二次函數(shù)的圖象與性質(zhì),即可求解.【詳解】根據(jù)題意,命題,均為真命題,可得命題為真命題,為假命題,由命題恒成立,可得,解得;又由命題為假命題,可得,解得,所以,即實(shí)數(shù)a的取值范圍為.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)利用互斥事件的概率公式,即可求解;(2)由條件可知兩單共獲得的獎(jiǎng)勵(lì)為3元即事件,同樣利用互斥事件和的概率,即可求解.【小問(wèn)1詳解】設(shè)事件分別表示“被評(píng)為等級(jí)”,由題意,事件兩兩互斥,所以,又“不被罰款”,所以.因此“不被罰款”概率為;【小問(wèn)2詳解】設(shè)事件表示“第單被評(píng)為等級(jí)”,,則“兩單共獲得的獎(jiǎng)勵(lì)為3元”即事件,且事件彼此互斥,又,所以.18、(1)(2)證明見(jiàn)解析【解析】(1)根據(jù)已知條件列方程組,解方程組求得,從而求得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線的方程并與橢圓方程聯(lián)立,由此求得,同理求得,從而化簡(jiǎn)求得直線的斜率為定值.【小問(wèn)1詳解】由題可知,解得,從而粚圓方程為.【小問(wèn)2詳解】證明設(shè)直線的斜率為,則,,聯(lián)立直線與橢圓的方程,得,整理得,從而,于是,由題意得直線的斜率為,則,,同理可求得,于是即直線的斜率為定值.19、(1);(2).【解析】(1)根據(jù)題意計(jì)算得到,得到橢圓方程.(2)設(shè)直線的方程為,聯(lián)立方程,根據(jù)韋達(dá)定理得到,,表示出,解得答案.【詳解】(1)依題意有解得所以橢圓的標(biāo)準(zhǔn)方程是.(2)由題意直線的斜率不能為,設(shè)直線的方程為,由方程組得,設(shè),,所以,,所以,所以,令(),則,,因?yàn)樵谏蠁握{(diào)遞增,所以當(dāng),即時(shí),面積取得最大值為.【點(diǎn)睛】本題考查了橢圓方程,橢圓內(nèi)三角形面積的最值問(wèn)題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1);(2).【解析】(1)根據(jù)等差數(shù)列的通項(xiàng)公式求解;(2)運(yùn)用裂項(xiàng)相消法求數(shù)列的和.詳解】(1)∵,∴,即∴(2)由(1)可得,即.利用累加法得【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和裂項(xiàng)相消法求數(shù)列的和.21、(1);(2)【解析】(1)由焦點(diǎn)坐標(biāo)可求c值,a值,然后可求出b的值.進(jìn)而求出橢圓C的標(biāo)準(zhǔn)方程(2)先求出直線方程然后與橢圓方程聯(lián)立利用韋達(dá)定理及弦長(zhǎng)公式求出|AB|的長(zhǎng)度【詳解】解:⑴由,長(zhǎng)軸長(zhǎng)為6得:所以∴橢圓方程為⑵設(shè),由⑴可知橢圓方程為①,∵直線AB的方程為②把②代入①得化簡(jiǎn)并整理得所以又【點(diǎn)睛】本題考查橢圓的方程和性質(zhì),考查韋達(dá)定理及弦長(zhǎng)公式的應(yīng)用,考

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論