山西省忻州市靜樂(lè)一中2023屆高考數(shù)學(xué)試題全真模擬卷_第1頁(yè)
山西省忻州市靜樂(lè)一中2023屆高考數(shù)學(xué)試題全真模擬卷_第2頁(yè)
山西省忻州市靜樂(lè)一中2023屆高考數(shù)學(xué)試題全真模擬卷_第3頁(yè)
山西省忻州市靜樂(lè)一中2023屆高考數(shù)學(xué)試題全真模擬卷_第4頁(yè)
山西省忻州市靜樂(lè)一中2023屆高考數(shù)學(xué)試題全真模擬卷_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西省忻州市靜樂(lè)一中2023屆高考數(shù)學(xué)試題全真模擬卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下圖所示函數(shù)圖象經(jīng)過(guò)何種變換可以得到的圖象()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位2.已知,是兩條不重合的直線,,是兩個(gè)不重合的平面,則下列命題中錯(cuò)誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則3.已知集合,,若,則()A.或 B.或 C.或 D.或4.將3個(gè)黑球3個(gè)白球和1個(gè)紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種5.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-26.已知,則下列說(shuō)法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題7.已知復(fù)數(shù)滿足:(為虛數(shù)單位),則()A. B. C. D.8.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.89.若,則下列不等式不能成立的是()A. B. C. D.10.已知圓:,圓:,點(diǎn)、分別是圓、圓上的動(dòng)點(diǎn),為軸上的動(dòng)點(diǎn),則的最大值是()A. B.9 C.7 D.11.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.12.已知函數(shù),則下列結(jié)論中正確的是①函數(shù)的最小正周期為;②函數(shù)的圖象是軸對(duì)稱圖形;③函數(shù)的極大值為;④函數(shù)的最小值為.A.①③ B.②④C.②③ D.②③④二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足:,,若對(duì)任意的正整數(shù)均有,則實(shí)數(shù)的最大值是_____.14.函數(shù)的定義域?yàn)開(kāi)____________.15.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克,原料1千克.每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗原料都不超過(guò)12千克.通過(guò)合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤(rùn)是__________元.16.已知橢圓的左、右焦點(diǎn)分別為、,過(guò)橢圓的右焦點(diǎn)作一條直線交橢圓于點(diǎn)、.則內(nèi)切圓面積的最大值是_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù);(2)記函數(shù)在區(qū)間上的兩個(gè)極值點(diǎn)分別為、,求證:.18.(12分)已知函數(shù).當(dāng)時(shí),求不等式的解集;,,求a的取值范圍.19.(12分)已知函數(shù),直線是曲線在處的切線.(1)求證:無(wú)論實(shí)數(shù)取何值,直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)若直線經(jīng)過(guò)點(diǎn),試判斷函數(shù)的零點(diǎn)個(gè)數(shù)并證明.20.(12分)已知A是拋物線E:y2=2px(p>0)上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑兩端點(diǎn)的圓C交直線x=1于M,N兩點(diǎn).(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點(diǎn)為P,Q,點(diǎn)G為PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),求直線OG斜率的取值范圍.21.(12分)已知函數(shù),其中為自然對(duì)數(shù)的底數(shù),.(1)若曲線在點(diǎn)處的切線與直線平行,求的值;(2)若,問(wèn)函數(shù)有無(wú)極值點(diǎn)?若有,請(qǐng)求出極值點(diǎn)的個(gè)數(shù);若沒(méi)有,請(qǐng)說(shuō)明理由.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實(shí)數(shù),使得,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)函數(shù)圖像得到函數(shù)的一個(gè)解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個(gè)單位得到.故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.2、D【解析】

根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項(xiàng)A:若,,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項(xiàng)B:若,,,由線面平行的判定定理,有,故B正確;選項(xiàng)C:若,,,故,所成的二面角為,則,故C正確;選項(xiàng)D,若,,有可能,故D不正確.故選:D【點(diǎn)睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.3、B【解析】

因?yàn)?所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.4、D【解析】

采取分類計(jì)數(shù)和分步計(jì)數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開(kāi)始僅有兩個(gè)相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時(shí)將紅球插入6個(gè)球組成的7個(gè)空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個(gè)相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時(shí)紅球只能插入兩個(gè)相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點(diǎn)睛】本題考查排列組合公式的具體應(yīng)用,插空法的應(yīng)用,屬于基礎(chǔ)題5、B【解析】

通過(guò)復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運(yùn)算,化簡(jiǎn)求解即可.【詳解】復(fù)數(shù)滿足,∴,故選B.【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)模長(zhǎng)的概念,屬于基礎(chǔ)題.6、D【解析】

舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案.【詳解】當(dāng)時(shí),故命題為假命題;記f(x)=ex﹣x的導(dǎo)數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點(diǎn)睛】本題考查復(fù)合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對(duì)函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.7、A【解析】

利用復(fù)數(shù)的乘法、除法運(yùn)算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.8、A【解析】

先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點(diǎn)睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.9、B【解析】

根據(jù)不等式的性質(zhì)對(duì)選項(xiàng)逐一判斷即可.【詳解】選項(xiàng)A:由于,即,,所以,所以,所以成立;選項(xiàng)B:由于,即,所以,所以,所以不成立;選項(xiàng)C:由于,所以,所以,所以成立;選項(xiàng)D:由于,所以,所以,所以,所以成立.故選:B.【點(diǎn)睛】本題考查不等關(guān)系和不等式,屬于基礎(chǔ)題.10、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對(duì)稱點(diǎn),,故的最大值為,故選B.考點(diǎn):圓與圓的位置關(guān)系及其判定.【思路點(diǎn)睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對(duì)稱性,求出所求式子的最大值.11、C【解析】

利用基本初等函數(shù)的單調(diào)性判斷各選項(xiàng)中函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出結(jié)果.【詳解】對(duì)于A選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于B選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于C選項(xiàng),函數(shù)在區(qū)間上為減函數(shù);對(duì)于D選項(xiàng),函數(shù)在區(qū)間上為增函數(shù).故選:C.【點(diǎn)睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見(jiàn)的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.12、D【解析】

因?yàn)椋寓俨徽_;因?yàn)?,所以,,所以,所以函?shù)的圖象是軸對(duì)稱圖形,②正確;易知函數(shù)的最小正周期為,因?yàn)楹瘮?shù)的圖象關(guān)于直線對(duì)稱,所以只需研究函數(shù)在上的極大值與最小值即可.當(dāng)時(shí),,且,令,得,可知函數(shù)在處取得極大值為,③正確;因?yàn)?,所以,所以函?shù)的最小值為,④正確.故選D.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達(dá)式的取值分析出,再用數(shù)學(xué)歸納法證明滿足條件即可.【詳解】因?yàn)?累加可得.若,注意到當(dāng)時(shí),,不滿足對(duì)任意的正整數(shù)均有.所以.當(dāng)時(shí),證明:對(duì)任意的正整數(shù)都有.當(dāng)時(shí),成立.假設(shè)當(dāng)時(shí)結(jié)論成立,即,則,即結(jié)論對(duì)也成立.由數(shù)學(xué)歸納法可知,對(duì)任意的正整數(shù)都有.綜上可知,所求實(shí)數(shù)的最大值是2.故答案為:2【點(diǎn)睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問(wèn)題,需要根據(jù)遞推公式累加求解,同時(shí)注意結(jié)合參數(shù)的范圍問(wèn)題進(jìn)行分析.屬于難題.14、【解析】

由題意可得,,解不等式可求.【詳解】解:由題意可得,,解可得,,故答案為.【點(diǎn)睛】本題主要考查了函數(shù)的定義域的求解,屬于基礎(chǔ)題.15、1元【解析】設(shè)分別生產(chǎn)甲乙兩種產(chǎn)品為桶,桶,利潤(rùn)為元

則根據(jù)題意可得目標(biāo)函數(shù),作出可行域,如圖所示作直線然后把直線向可行域平移,

由圖象知當(dāng)直線經(jīng)過(guò)時(shí),目標(biāo)函數(shù)的截距最大,此時(shí)最大,

由可得,即此時(shí)最大,

即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤(rùn),最大利潤(rùn)為1.【點(diǎn)睛】本題考查用線性規(guī)劃知識(shí)求利潤(rùn)的最大值,根據(jù)條件建立不等式關(guān)系,以及利用線性規(guī)劃的知識(shí)進(jìn)行求解是解決本題的關(guān)鍵.16、【解析】令直線:,與橢圓方程聯(lián)立消去得,可設(shè),則,.可知,又,故.三角形周長(zhǎng)與三角形內(nèi)切圓的半徑的積是三角形面積的二倍,則內(nèi)切圓半徑,其面積最大值為.故本題應(yīng)填.點(diǎn)睛:圓錐曲線中最值與范圍的求法有兩種:(1)幾何法:若題目的條件和結(jié)論能明顯體現(xiàn)幾何特征及意義,則考慮利用圖形性質(zhì)來(lái)解決,這就是幾何法.(2)代數(shù)法:若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù),則可首先建立起目標(biāo)函數(shù),再求這個(gè)函數(shù)的最值,求函數(shù)最值的常用方法有配方法,判別式法,重要不等式及函數(shù)的單調(diào)性法等.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析.【解析】

(1)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點(diǎn)存在定理可得出結(jié)論;(2)設(shè)函數(shù)的極大值點(diǎn)和極小值點(diǎn)分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數(shù)的單調(diào)性推導(dǎo)出,再利用正弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】(1),,,當(dāng)時(shí),,,,則函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,,,則函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,,,則函數(shù)在上單調(diào)遞增.,,,,.所以,函數(shù)在與不存在零點(diǎn),在區(qū)間和上各存在一個(gè)零點(diǎn).綜上所述,函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點(diǎn),所以,函數(shù)在區(qū)間與上各存在一個(gè)極值點(diǎn)、,且,,且滿足即,,,又,即,,,,,由在上單調(diào)遞增,得,再由在上單調(diào)遞減,得,即.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題,同時(shí)也考查了利用導(dǎo)數(shù)證明不等式,考查分析問(wèn)題和解決問(wèn)題的能力,屬于難題.18、(1);(2).【解析】

(1)當(dāng)時(shí),,①當(dāng)時(shí),,令,即,解得,②當(dāng)時(shí),,顯然成立,所以,③當(dāng)時(shí),,令,即,解得,綜上所述,不等式的解集為.(2)因?yàn)?,因?yàn)?,有成立,所以只需,解得,所以a的取值范圍為.【點(diǎn)睛】絕對(duì)值不等式的解法:法一:利用絕對(duì)值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點(diǎn)分段法”求解,體現(xiàn)了分類討論的思想;法三:通過(guò)構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.19、(1)見(jiàn)解析,(2)函數(shù)存在唯一零點(diǎn).【解析】

(1)首先求出導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義求出處的切線斜率,利用點(diǎn)斜式即可求出切線方程,根據(jù)方程即可求出定點(diǎn).(2)由(1)求出函數(shù),令方程可轉(zhuǎn)化為記,利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞增,根據(jù),由零點(diǎn)存在性定理即可求出零點(diǎn)個(gè)數(shù).【詳解】所以直線方程為即,恒過(guò)點(diǎn)將代入直線方程,得考慮方程即,等價(jià)于記,則于是函數(shù)在上單調(diào)遞增,又所以函數(shù)在區(qū)間上存在唯一零點(diǎn),即函數(shù)存在唯一零點(diǎn).【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、直線過(guò)定點(diǎn)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、零點(diǎn)存在性定理,屬于難題.20、(1).(2)【解析】

(1)設(shè)A的坐標(biāo)為A(x0,y0),由題意可得圓心C的坐標(biāo),求出C到直線x=1的距離.由半個(gè)弦長(zhǎng),圓心到直線的距離及半徑構(gòu)成直角三角形可得p的值,進(jìn)而求出拋物線的方程;(2)將拋物線的方程與圓的方程聯(lián)立可得韋達(dá)定理,進(jìn)而求出中點(diǎn)G的坐標(biāo),再求出直線OG的斜率的表達(dá)式,換元可得斜率的取值范圍.【詳解】(1)設(shè)A(x0,y0)且y02=2px0,則圓心C(),圓C的直徑|AB|,圓心C到直線x=1的距離d=|1|=||,因?yàn)閨MN|=2,所以()2+d2=()2,即1,y02=2px0,整理可得(2p﹣4)x0=0,所以p=2,所以拋物線的方程為:y2=4x;(2)聯(lián)立拋物線與圓的方程整理可得x2﹣2(5﹣p)x+16=0,△>0,設(shè)P(x1,y1),Q(x2,y2),則x1+x2=2(5﹣p),x1x2=16,所以中點(diǎn)G的橫坐標(biāo)xG=5﹣p,yG(),所以kOG(0<P<1),令t=5﹣p(t∈(4,5)),則kOG(),解得0<kOG,所以直線OG斜率的取值范圍(0,).【點(diǎn)睛】本題考查拋物線的性質(zhì)及直線與拋物線的綜合,換元方法

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論