版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年上海市莘莊中學等四校聯(lián)考數學高二上期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數的值域為,則實數的取值范圍是()A. B.C. D.2.若連續(xù)拋擲兩次骰子得到的點數分別為m,n,則點P(m,n)在直線x+y=4上的概率是()A. B.C. D.3.如圖,在正方體中,點,分別是面對角線與的中點,若,,,則()A. B.C. D.4.已知數列滿足,,記數列的前n項和為,若對于任意,不等式恒成立,則實數k的取值范圍為()A. B.C. D.5.一組“城市平安建設”的滿意度測評結果,,…,的平均數為116分,則,,…,,116的()A.平均數變小 B.平均數不變C.標準差不變 D.標準差變大6.已知為兩條不同的直線,為兩個不同的平面,則下列結論正確的是()A.若,則B.若,則C.若,則D.若,則7.已知,,若,則實數的值為()A. B.C. D.8.已知為圓:上任意一點,則的最小值為()A. B.C. D.9.設是公差的等差數列,如果,那么()A. B.C. D.10.等差數列x,,,…的第四項為()A.5 B.6C.7 D.811.已知直線與直線垂直,則()A. B.C. D.312.2021年7月,某文學網站對該網站的數字媒體內容能否滿足讀者需要進行了調查,調查部門隨機抽取了名讀者,所得情況統(tǒng)計如下表所示:滿意程度學生族上班族退休族滿意一般不滿意記滿分為分,一般為分,不滿意為分.設命題:按分層抽樣方式從不滿意的讀者中抽取人,則退休族應抽取人;命題:樣本中上班族對數字媒體內容滿意程度的方差為.則下列命題中為真命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正方體的棱長為為的中點,為面內一點.若點到面的距離與到直線的距離相等,則三棱錐體積的最小值為__________14.已知拋物線的焦點為F,若拋物線上一點P到x軸的距離為2,則|PF|的值為___________.15.已知數列都是等差數列,公差分別為,數列滿足,則數列的公差為__________16.如圖,四棱錐的底面是正方形,底面,為的中點,若,則點到平面的距離為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系內,橢圓E:過點,離心率為(1)求E的方程;(2)設直線(k∈R)與橢圓E交于A,B兩點,在y軸上是否存在定點M,使得對任意實數k,直線AM,BM的斜率乘積為定值?若存在,求出點M的坐標;若不存在,說明理由18.(12分)在平面直角坐標系中,動點,滿足,記點的軌跡為(1)請說明是什么曲線,并寫出它的方程;(2)設不過原點且斜率為的直線與交于不同的兩點,,線段的中點為,直線與交于兩點,,請判斷與的關系,并證明你的結論19.(12分)已知函數R)(1)當時,求函數的圖象在處的切線方程;(2)求的單調區(qū)間20.(12分)已知直線經過兩條直線和的交點,且與直線垂直(1)求直線的一般式方程;(2)若圓的圓心為點,直線被該圓所截得的弦長為,求圓的標準方程21.(12分)如圖,在直角梯形中,.直角梯形通過直角梯形以直線為軸旋轉得到,且使得平面平面.M為線段的中點,P為線段上的動點(1)求證:;(2)當點P滿足時,求證:直線平面;(3)是否存在點P,使直線與平面所成角的正弦值為?若存在,試確定P點的位置;若不存在,請說明理由22.(10分)已知數列滿足,(1)證明是等比數列,(2)求數列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出函數在時值的集合,函數在時值的集合,再由已知并借助集合包含關系即可作答.【詳解】當時,在上單調遞增,,,則在上值的集合是,當時,,,當時,,當時,,即在上單調遞減,在上單調遞增,,,則在上值的集合為,因函數的值域為,于是得,則,解得,所以實數的取值范圍是.故選:D2、D【解析】利用分布計數原理求出所有的基本事件個數,在求出點落在直線x+y=4上包含的基本事件個數,利用古典概型的概率個數求出.解:連續(xù)拋擲兩次骰子出現(xiàn)的結果共有6×6=36,其中每個結果出現(xiàn)的機會都是等可能的,點P(m,n)在直線x+y=4上包含的結果有(1,3),(2,2),(3,1)共三個,所以點P(m,n)在直線x+y=4上的概率是3:36=1:12,故選D考點:古典概型點評:本題考查先判斷出各個結果是等可能事件,再利用古典概型的概率公式求概率,屬于基礎題3、D【解析】由空間向量運算法則得,利用向量的線性運算求出結果.【詳解】因為點,分別是面對角線與的中點,,,,所以故選:D.4、C【解析】由已知得,根據等比數列的定義得數列是首項為,公比為的等比數列,由此求得,然后利用裂項求和法求得,進而求得的取值范圍.【詳解】解:依題意,當時,,則,所以數列是首項為,公比為的等比數列,,即,所以,所以,所以的取值范圍是.故選:C.5、B【解析】利用平均數、方差的定義和性質直接求出,,…,,116的平均數、方差從而可得答案.【詳解】,,…,的平均數為116分,則,,…,,116的平均數為設,,…,的方差為則所以則,,…,,116的方差為所以,,…,,116的平均數不變,方差變小.標準差變小.故選:B6、D【解析】根據空間里面直線與平面、平面與平面位置關系的相關定理逐項判斷即可.【詳解】A,若,則或異面,故該選項錯誤;B,若,則或相交,故該選項錯誤;C,若,則α,β不一定垂直,故該選項錯誤;D,若,則利用面面垂直的性質可得,故該選項正確.故選:D.7、A【解析】由,得,從而可得答案.【詳解】解:因為,所以,即,解得.故選:A.8、C【解析】設,則的幾何意義為圓上的點和定點連線的斜率,利用直線和圓相切,即可求出的最小值;【詳解】圓,它圓心是,半徑為1,設,則,即,當直線和圓相切時,有,可得,,的最小值為:,故選:9、D【解析】由已知可得,即可得解.【詳解】由已知可得.故選:D.10、A【解析】根據等差數列的定義求出x,求出公差,即可求出第四項.【詳解】由題可知,等差數列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項為-1+(4-1)×2=5.故選:A.11、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.12、A【解析】由抽樣比再乘以可得退休族應抽取人數可判斷命題,求出上班族對數字媒體內容滿意程度的平均分,由方差公式計算方差可判斷,再由復合命題的真假判斷四個選項,即可得正確選項.【詳解】因為退休族應抽取人,所以命題正確;樣本中上班族對數字媒體內容滿意程度的平均分為,方差為,命題正確,所以為真,、、為假命題,故選:二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由題意可知,點在平面內的軌跡是以為焦點,直線為準線的拋物線,如圖在底面建立平面直角坐標系,求出拋物線方程,直線的方程,將直線向拋物線平移,恰好與拋物線相切時,切點為點,此時的面積最小,則三棱錐體積的最小【詳解】因為為面內一點,且點到面的距離與到直線的距離相等,所以點在平面內的軌跡是以為焦點,直線為準線的拋物線,如圖在底面,以所在的直線為軸,以的中垂線為軸建立平面直角坐標系,則,設拋物線方程為,則,得,所以拋物線方程為,,直線的方程為,即,設與直線平行且與拋物線相切的直線方程為,由,得,由,得,所以與拋物線相切的直線為,此時切點為,且的面積最小,因為點到直線的距離為,所以的面積的最小值為,所以三棱錐體積的最小值為,故答案為:14、3【解析】先求出拋物線的焦點坐標和準線方程,再利用拋物線的定義可求得答案【詳解】拋物線的焦點為,準線為,因為拋物線上一點P到x軸的距離為2,所以由拋物線的定義可得,故答案為:315、##【解析】利用等差數列的定義即得.【詳解】∵數列都是等差數列,公差分別為,數列滿足,∴.故答案為:.16、【解析】以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得點到平面的距離.【詳解】因為底面,,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,則、、、,設平面的法向量為,,,則,取,可得,,所以,點到平面的距離為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,或者【解析】(1)由離心率和橢圓經過的點列出方程組,求出,得到橢圓方程;(2)假設存在,設出直線,聯(lián)立橢圓,利用韋達定理得到兩根之和,兩根之積,結合斜率乘積為定值得到關于的方程,求出答案.【小問1詳解】由題可得,,①由,得,即,則,②將②代入①,解得,,故E的方程為【小問2詳解】設存在點滿足條件記,由消去y,得.顯然,判別式>0,所以,,于是===上式為定值,當且僅當,解得或此時,或所以,存在定點或者滿足條件18、(1)橢圓,(2),證明見解析【解析】(1)結合橢圓第一定義直接判斷即可求出的軌跡為;(2)設直線的方程為,,,聯(lián)立橢圓方程,寫出韋達定理;由中點公式求出點,進而得出直線方程,聯(lián)立橢圓方程求出,結合弦長公式可求,可轉化為,結合韋達定理可化簡,進而得證.【小問1詳解】設,,則因為,滿足,即動點表示以點,為左、右焦點,長軸長為4,焦距為的橢圓,其軌跡的方程為;【小問2詳解】可以判斷出,下面進行證明:設直線的方程為,,,由方程組,得①,方程①判別式為,由,即,解得且由①得,,所以點坐標為,直線方程為,由方程組,得,,所以又所以.19、(1)(2)答案見解析【解析】(1)根據切點處的導數等于切線斜率,切點在曲線上可得切線方程;(2)求導,分類討論可得.【小問1詳解】當時,,,,則,所以在處的切線方程為【小問2詳解】,,當時,,函數在R上單調遞增;當時,令,則,當時,,單調遞減;當時,,單調遞增當時,的單調遞增區(qū)間為,當時,的單調遞增區(qū)間為,單調遞減區(qū)間為20、(1)(2)【解析】(1)由題意求出兩直線的交點,再求出所求直線的斜率,用點斜式寫出直線的方程;(2)根據題意求出圓的半徑,由圓心寫出圓的標準方程【小問1詳解】解:由題意知,解得,直線和的交點為;設直線的斜率為,與直線垂直,;直線的方程為,化為一般形式為;【小問2詳解】解:設圓的半徑為,則圓心為到直線的距離為,由垂徑定理得,解得,圓的標準方程為21、(1)見解析(2)見解析(3)存在點P,【解析】(1)建立空間坐標系求兩直線的方向向量,根據數量積為0可證的結論;(2)求得直線的方向向量和面的法向量,證得兩向量垂直即可;(3)求直線的方向向量和面的法向量的夾角即可.【小問1詳解】由已知可得,,,兩兩垂直,以A為原點,,,所在直線為軸,軸,軸建立如圖空間直角坐標系,因為,所以,,,,,,,,,∴,,∴,,即,,∴平面又∵平面,∴【小問2詳解】設點坐標為,則,∵,∴,,,解得:,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度綠色出行解決方案民間擔保借款合同4篇
- 男方協(xié)議離婚書2025年度電子版制作與版權保護合同3篇
- 二零二五年度智能電網設備研發(fā)與銷售合同范本4篇
- 二零二五版內資股協(xié)議轉讓知識產權保護合同4篇
- 二零二五年度爬架租賃與施工現(xiàn)場環(huán)境保護合同2篇
- 2025年度城市公園綠地日常養(yǎng)護維修服務合同規(guī)范3篇
- 二零二五年度名筑印象住宅電梯品牌代理銷售合同4篇
- 二零二五年內蒙古文化旅游融合發(fā)展合同規(guī)范4篇
- 2025年度瓷磚鋪貼與新型建筑材料研發(fā)合同4篇
- 二零二五年度山莊生態(tài)旅游合作開發(fā)合同范本2篇
- 二零二五年度無人駕駛車輛測試合同免責協(xié)議書
- 2025年湖北華中科技大學招聘實驗技術人員52名歷年高頻重點提升(共500題)附帶答案詳解
- 黑龍江省哈爾濱市2024屆中考數學試卷(含答案)
- 高三日語一輪復習助詞「と」的用法課件
- 毛渣采購合同范例
- 無子女離婚協(xié)議書范文百度網盤
- 2023中華護理學會團體標準-注射相關感染預防與控制
- 五年級上冊小數遞等式計算200道及答案
- 2024年廣東高考政治真題考點分布匯 總- 高考政治一輪復習
- 燃氣管道年度檢驗報告
- GB/T 44052-2024液壓傳動過濾器性能特性的標識
評論
0/150
提交評論