2023-2024學(xué)年江蘇省江門中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第1頁
2023-2024學(xué)年江蘇省江門中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第2頁
2023-2024學(xué)年江蘇省江門中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第3頁
2023-2024學(xué)年江蘇省江門中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第4頁
2023-2024學(xué)年江蘇省江門中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年江蘇省江門中學(xué)數(shù)學(xué)高二上期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.以橢圓+=1的焦點為頂點,以這個橢圓的長軸的端點為焦點的雙曲線方程是()A. B.C. D.2.如圖,某圓錐軸截面是等邊三角形,點是底面圓周上的一點,且,點是的中點,則異面直線與所成角的余弦值是()A. B.C. D.3.在平面直角坐標(biāo)系中,線段的兩端點,分別在軸正半軸和軸正半軸上滑動,若圓上存在點是線段的中點,則線段長度的最小值為()A.4 B.6C.8 D.104.直線l的方向向量為,且l過點,則點到l的距離為()A B.C. D.5.已知函數(shù)的導(dǎo)函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A B.C. D.6.圓x2+y2-4=0與圓x2+y2-4x+4y-12=0公共弦所在直線方程為()A. B.C. D.7.函數(shù)在的圖象大致為()A. B.C D.8.已知,,則等于()A.2 B.C. D.9.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點為M,設(shè)=,=,=,則=()A.++ B.+C.++ D.+10.化學(xué)中,將構(gòu)成粒子(原子、離子或分子)在空間按一定規(guī)律呈周期性重復(fù)排列構(gòu)成的固體物質(zhì)稱為晶體.在結(jié)構(gòu)化學(xué)中,可將晶體結(jié)構(gòu)截分為一個個包含等同內(nèi)容的基本單位,這個基本單位叫做晶胞.已知鈣、鈦、氧可以形成如圖所示的立方體晶胞(其中Ti原子位于晶胞的中心,Ca原子均在頂點位置,O原子位于棱的中點).則圖中原子連線BF與所成角的余弦值為()A. B.C. D.11.設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.2021年7月,某文學(xué)網(wǎng)站對該網(wǎng)站的數(shù)字媒體內(nèi)容能否滿足讀者需要進行了調(diào)查,調(diào)查部門隨機抽取了名讀者,所得情況統(tǒng)計如下表所示:滿意程度學(xué)生族上班族退休族滿意一般不滿意記滿分為分,一般為分,不滿意為分.設(shè)命題:按分層抽樣方式從不滿意的讀者中抽取人,則退休族應(yīng)抽取人;命題:樣本中上班族對數(shù)字媒體內(nèi)容滿意程度的方差為.則下列命題中為真命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點P為雙曲線上任意一點,則P滿足性質(zhì):點P到右焦點的距離與它到直線的距離之比為離心率e,若C的右支上存在點Q,使得Q到左焦點的距離等于它到直線的距離的6倍,則雙曲線的離心率的取值范圍是______14.已知數(shù)列的前項和為,,則___________,___________.15.如圖:雙曲線的左右焦點分別為,,過原點O的直線與雙曲線C相交于P,Q兩點,其中P在右支上,且,則的面積為___________.16.已知數(shù)列滿足,,的前項和為,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面為正方形,底面,設(shè)平面與平面的交線為.(1)證明:;(2)已知,為直線上的點,求與平面所成角的正弦值的最大值.18.(12分)已知是等差數(shù)列,是等比數(shù)列,且(1)求,的通項公式;(2)設(shè),求數(shù)列的前項和.19.(12分)已知直線l:,圓C:.(1)當(dāng)時,試判斷直線l與圓C的位置關(guān)系,并說明理由;(2)若直線l被圓C截得的弦長恰好為,求k的值.20.(12分)已知橢圓的左焦點為,上頂點為,直線與橢圓的另一個交點為A(1)求點A的坐標(biāo);(2)過點且斜率為的直線與橢圓交于,兩點(均與A,不重合),過點與軸垂直的直線分別交直線,于點,,證明:點,關(guān)于軸對稱21.(12分)已知橢圓的上、下頂點分別為A,B,離心率為,橢圓C上的點與其右焦點F的最短距離為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若直線與橢圓C交于P,Q兩點,直線PA與QB的斜率分別為,,且,那么直線l是否過定點,若過定點,求出該定點坐標(biāo);否則,請說明理由.22.(10分)某高校自主招生考試分筆試與面試兩部分,每部分考試成績只記“通過”與“不通過”,兩部分考試都“通過”者,則考試“通過”,并給予錄取.甲、乙兩人在筆試中“通過”的概率依次為,在面試中“通過”的概率依次為,筆試和面試是否“通過”是獨立的,那么(1)甲、乙兩人都參加此高校的自主招生考試,誰獲得錄取的可能性大?(2)甲、乙兩人都參加此高校的自主招生考試,求恰有一人獲得錄取的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)橢圓的幾何性質(zhì)求橢圓的焦點坐標(biāo)和長軸端點坐標(biāo),由此可得雙曲線的a,b,c,再求雙曲線的標(biāo)準(zhǔn)方程.【詳解】∵橢圓的方程為+=1,∴橢圓的長軸端點坐標(biāo)為,,焦點坐標(biāo)為,,∴雙曲線的焦點在y軸上,且a=1,c=2,∴b2=3,∴雙曲線方程為,故選:B.2、C【解析】建立空間直角坐標(biāo)系,分別得到,然后根據(jù)空間向量夾角公式計算即可.【詳解】以過點且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.3、C【解析】首先求點的軌跡,將問題轉(zhuǎn)化為兩圓有交點,即根據(jù)兩圓的位置關(guān)系,求參數(shù)的取值范圍.【詳解】設(shè),,的中點為,則,故點的軌跡是以原點為圓心,為半徑的圓,問題轉(zhuǎn)化為圓與圓有交點,所以,,即,解得:,所以線段長度的最小值為.故選:C4、C【解析】利用向量投影和勾股定理即可計算.【詳解】∵,∴又,∴在方向上的投影,∴P到l距離故選:C.5、D【解析】根據(jù)導(dǎo)函數(shù)大于,原函數(shù)單調(diào)遞增;導(dǎo)函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導(dǎo)函數(shù)得圖象可得:時,,所以在單調(diào)遞減,排除選項A、B,當(dāng)時,先正后負,所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.6、B【解析】兩圓的方程消掉二次項后的二元一次方程即為公共弦所在直線方程.【詳解】由x2+y2-4=0與x2+y2-4x+4y-12=0兩式相減得:,即.故選:B7、D【解析】函數(shù)|在[–2,2]上是偶函數(shù),其圖象關(guān)于軸對稱,因為,所以排除選項;當(dāng)時,有一零點,設(shè)為,當(dāng)時,為減函數(shù),當(dāng)時,為增函數(shù)故選:D.8、D【解析】利用兩角和的正切公式計算出正確答案.【詳解】.故選:D9、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B10、C【解析】如圖所示,以為坐標(biāo)原點,所在的直線分別為軸,建立直角坐標(biāo)系,設(shè)立方體的棱長為,求出的值,即可得到答案;【詳解】如圖所示,以為坐標(biāo)原點,所在的直線分別為軸,建立直角坐標(biāo)系,設(shè)立方體的棱長為,則,,,,連線與所成角的余弦值為故選:C.11、D【解析】當(dāng)時,不是遞增數(shù)列;當(dāng)且時,是遞增數(shù)列,但是不成立,所以選D.考點:等比數(shù)列12、A【解析】由抽樣比再乘以可得退休族應(yīng)抽取人數(shù)可判斷命題,求出上班族對數(shù)字媒體內(nèi)容滿意程度的平均分,由方差公式計算方差可判斷,再由復(fù)合命題的真假判斷四個選項,即可得正確選項.【詳解】因為退休族應(yīng)抽取人,所以命題正確;樣本中上班族對數(shù)字媒體內(nèi)容滿意程度的平均分為,方差為,命題正確,所以為真,、、為假命題,故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】若Q到的距離為有,由題設(shè)有,結(jié)合雙曲線離心率的性質(zhì),即可求離心率的范圍.【詳解】由題意,,即,整理有,所以或,若Q到的距離為,則Q到左、右焦點的距離分別為、,又Q在C的右支上,所以,則,又,綜上,雙曲線的離心率的取值范圍是.故答案為:【點睛】關(guān)鍵點點睛:若Q到的距離為,根據(jù)給定性質(zhì)有Q到左、右焦點的距離分別為、,再由雙曲線性質(zhì)及已知條件列不等式組求離心率范圍.14、①.②.【解析】第一空:由,代入已知條件,即可解得結(jié)果;第二空:由與關(guān)系可推導(dǎo)出之間的關(guān)系,再由遞推公式即可求出通項公式.【詳解】,可得由,可知時,故時即可化為又故數(shù)列是首項為公比為2的等比數(shù)列,故數(shù)列的通項公式故答案為:①;②15、24【解析】利用雙曲線定義結(jié)合已知求出,,再利用雙曲線的對稱性計算作答.【詳解】依題意,,,又,解得,,則有,即,連接,如圖,因過原點O的直線與雙曲線C相交于P,Q兩點,由雙曲線的對稱性知,P,Q關(guān)于原點O對稱,因此,四邊形是平行四邊形,,所以的面積為24.故答案為:2416、【解析】分析出當(dāng)為正奇數(shù)時,,可求得的值,再分析出當(dāng)為正偶數(shù)時,,可求得的值,進而可求得的值.【詳解】由題知,當(dāng)為正奇數(shù)時,,于是,,,,,所以.又因為當(dāng)為正偶數(shù)時,,且,所以兩式相加可得,于是,兩式相減得.所以,故.故答案為:.【點睛】關(guān)鍵點點睛:本題的解題關(guān)鍵在于分析出當(dāng)為正奇數(shù)時,,以及當(dāng)為正偶數(shù)時,,找出規(guī)律,結(jié)合并項求和法求出以及的值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由可證得平面,根據(jù)線面平行的性質(zhì)可證得結(jié)論;(2)以為坐標(biāo)原點建立空間直角坐標(biāo)系,設(shè),利用線面角的向量求法可表示出,分別在、和三種情況下,結(jié)合基本不等式求得所求最大值.【小問1詳解】四邊形為正方形,,又平面,平面,平面,又平面,平面平面,.【小問2詳解】以為坐標(biāo)原點,為軸可建立如圖所示空間直角坐標(biāo)系,則,,,,由(1)知:,則可設(shè),,,,設(shè)平面的法向量,則,令,則,,,設(shè)直線與平面所成角為,;當(dāng)時,;當(dāng)時,(當(dāng)且僅當(dāng),即時取等號);當(dāng)時,;綜上所述:直線與平面所成角正弦值的最大值為.18、(1),;(2).【解析】(1)由,根據(jù)等比數(shù)列的性質(zhì)求得、的值,即可得的通項公式,再根據(jù)列出關(guān)于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)結(jié)合(1)可得,根據(jù)錯位相減法,利用等比數(shù)列求和公式可得結(jié)果.【詳解】(1)等比數(shù)列的公比,所以,設(shè)等差數(shù)列公差為因為,,所以,即所以(2)由(1)知,,因此從而數(shù)列的前項和,,,兩式作差可得,,解得.【點睛】本題主要考查等比數(shù)列和等差數(shù)列的通項、等比數(shù)列的求和公式以及錯位相減法求數(shù)列的前項和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用“錯位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解,在寫出“”與“”的表達式時應(yīng)特別注意將兩式“錯項對齊”以便下一步準(zhǔn)確寫出“”的表達式.19、(1)相離,理由見解析;(2)0或【解析】(1)求出圓心到直線的距離和半徑比較即可判斷;(2)求出圓心到直線的距離,利用弦長計算即可得出.【詳解】(1)圓C:的圓心為,半徑為2,當(dāng)時,線l:,則圓心到直線的距離為,直線l與圓C相離;(2)圓心到直線的距離為,弦長為,則,解得或.20、(1)(2)證明見解析【解析】(1)先求出直線的方程,聯(lián)立直線與橢圓,求出A點坐標(biāo);(2)設(shè)出直線方程,聯(lián)立橢圓方程,用韋達定理得到兩根之和,兩根之積,求出兩點的縱坐標(biāo),證明出,即可證明關(guān)于軸對稱.【小問1詳解】由題意得,,所以直線方程為,與橢圓方程聯(lián)立得解得或,當(dāng)時,,所以【小問2詳解】設(shè),,的方程為,聯(lián)立消去得,則,直線的方程為,設(shè),則,直線的方程為,設(shè),則,因為,即,所以點,關(guān)于軸對稱21、(1)(2)恒過點【解析】(1)設(shè)為橢圓上的點,根據(jù)橢圓的性質(zhì)得到,再根據(jù)的取值范圍,得到,再根據(jù)離心率求出、,最后根據(jù),求出,即可得解;(2)設(shè)、,表示出、,聯(lián)立直線與橢圓方程,消元列出韋達定理,由,即可得到,再根據(jù),即可得到,從而得到,再將、代入計算可得;【小問1詳解】解:設(shè)為橢圓上的點,為橢圓的右焦點,所以,因為,所以,又,所以、,因為,所以,所以橢圓方程為;【小問2詳解】解:設(shè)、,依題意可得、,所以、,聯(lián)立得,則即,所以、,因為,所以,即,由得,即,所以,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論