版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年江西省南昌二中、九江一中、新余一中、臨川一中八所重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若圓與圓有且僅有一條公切線,則()A.-23 B.-3C.-12 D.-132.已知拋物線內(nèi)一點(diǎn),過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),且點(diǎn)為弦的中點(diǎn),則直線的方程為()A. B.C D.3.若點(diǎn)是函數(shù)圖象上的動(dòng)點(diǎn)(其中的自然對(duì)數(shù)的底數(shù)),則到直線的距離最小值為()A. B.C. D.4.命題“,則”及其逆命題、否命題和逆否命題這四個(gè)命題中,真命題的個(gè)數(shù)為()A.0 B.2C.3 D.45.圓與圓的公切線的條數(shù)為()A.1 B.2C.3 D.46.?dāng)?shù)列1,6,15,28,45,…中的每一項(xiàng)都可用如圖所示的六邊形表示出米,故稱它們?yōu)榱呅螖?shù),那么第11個(gè)六邊形數(shù)為()A.153 B.190C.231 D.2767.為比較甲、乙兩地某月時(shí)的氣溫狀況,隨機(jī)選取該月中的天,將這天中時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖(十位數(shù)字為莖,個(gè)位數(shù)字為葉).考慮以下結(jié)論:①甲地該月時(shí)的平均氣溫低于乙地該月時(shí)的平均氣溫;②甲地該月時(shí)的平均氣溫高于乙地該月時(shí)的平均氣溫;③甲地該月時(shí)的氣溫的標(biāo)準(zhǔn)差小于乙地該月時(shí)的氣溫的標(biāo)準(zhǔn)差;④甲地該月時(shí)的氣溫的標(biāo)準(zhǔn)差大于乙地該月時(shí)的氣溫的標(biāo)準(zhǔn)差.其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的編號(hào)為()A.①③ B.①④C.②③ D.②④8.已知的周長(zhǎng)為,頂點(diǎn)、的坐標(biāo)分別為、,則點(diǎn)的軌跡方程為()A. B.C. D.9.某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè).右圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是.A.90 B.75C.60 D.4510.已知橢圓的左頂點(diǎn)為,上頂點(diǎn)為,右焦點(diǎn)為,若,則橢圓的離心率的取值范圍是()A. B.C. D.11.已知過(guò)點(diǎn)的直線與圓相切,且與直線平行,則()A.2 B.1C. D.12.設(shè)滿足則的最大值為A. B.2C.4 D.16二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的離心率為__________14.已知函數(shù)若存在,使得成立,則實(shí)數(shù)的取值范圍是_______________15.若與直線垂直,那么__________16.已知函數(shù),則滿足實(shí)數(shù)的取值范圍是__三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列的首項(xiàng),且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前n項(xiàng)和.18.(12分)已知橢圓的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),橢圓C的離心率為.(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;(Ⅱ)從橢圓C在第一象限內(nèi)的部分上取橫坐標(biāo)為2的點(diǎn)P,若橢圓C上有兩個(gè)點(diǎn)A,B使得的平分線垂直于坐標(biāo)軸,且點(diǎn)B與點(diǎn)A的橫坐標(biāo)之差為,求直線AP的方程.19.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓C:的焦距為4,且過(guò)點(diǎn).(1)求橢圓C的方程;(2)設(shè)橢圓C的上頂點(diǎn)為B,右焦點(diǎn)為F,直線l與橢圓交于M,N兩點(diǎn),問(wèn)是否存在直線l,使得F為的垂心(高的交點(diǎn)),若存在,求出直線l的方程:若不存在,請(qǐng)說(shuō)明理由.20.(12分)如圖,在四棱錐S?ABCD中,已知四邊形ABCD是邊長(zhǎng)為的正方形,點(diǎn)S在底面ABCD上的射影為底面ABCD的中心點(diǎn)O,點(diǎn)P在棱SD上,且△SAC的面積為1(1)若點(diǎn)P是SD的中點(diǎn),求證:平面SCD⊥平面PAC;(2)在棱SD上是否存在一點(diǎn)P使得二面角P?AC?D的余弦值為?若存在,求出點(diǎn)P的位置;若不存在,說(shuō)明理由21.(12分)已知函數(shù).若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.22.(10分)如圖所示,在正方體中,E是棱的中點(diǎn).(Ⅰ)求直線BE與平面所成的角的正弦值;(Ⅱ)在棱上是否存在一點(diǎn)F,使平面?證明你的結(jié)論.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)兩圓有且僅有一條公切線,得到兩圓內(nèi)切,從而可求出結(jié)果.【詳解】因?yàn)閳A,圓心為,半徑為;圓可化為,圓心為,半徑,又圓與圓有且僅有一條公切線,所以兩圓內(nèi)切,因此,即,解得.故選:A.2、B【解析】利用點(diǎn)差法求出直線斜率,即可得出直線方程.【詳解】設(shè),則,兩式相減得,即,則直線方程為,即.故選:B.3、A【解析】設(shè),,設(shè)與平行且與相切的直線與切于,由導(dǎo)數(shù)的幾何意義可求出點(diǎn)的坐標(biāo),則到直線的距離最小值為點(diǎn)到直線的距離,再求解即可.【詳解】解:設(shè),,設(shè)與平行且與相切的直線與切于所以所以則到直線的距離為,即到直線的距離最小值為,故選:A4、D【解析】首先判斷原命題的真假,寫出其逆命題,即可判斷其真假,再根據(jù)互為逆否命題的兩個(gè)命題同真假,即可判斷;【詳解】解:因?yàn)槊}“,則”為真命題,所以其逆否命題也為真命題;其逆命題為:則,顯然也為真命題,故其否命題也為真命題;故命題“,則”及其逆命題、否命題和逆否命題這四個(gè)命題中,真命題有4個(gè);故選:D5、D【解析】公切線條數(shù)與圓與圓的位置關(guān)系是相關(guān)的,所以第一步需要判斷圓與圓的位置關(guān)系.【詳解】圓的圓心坐標(biāo)為,半徑為3;圓的圓心坐標(biāo)為,半徑為1,所以兩圓的心心距為,所以兩圓相離,公切線有4條.故選:D.6、C【解析】細(xì)心觀察,尋求相鄰項(xiàng)及項(xiàng)與序號(hào)之間的關(guān)系,同時(shí)聯(lián)系相關(guān)知識(shí),如等差數(shù)列、等比數(shù)列等,結(jié)合圖形即可求解.【詳解】由題意知,數(shù)列的各項(xiàng)為1,6,15,28,45,...所以,,,,,,所以.故選:C7、B【解析】根據(jù)莖葉圖數(shù)據(jù)求出平均數(shù)及標(biāo)準(zhǔn)差即可【詳解】由莖葉圖知甲地該月時(shí)的平均氣溫為,標(biāo)準(zhǔn)差為由莖葉圖知乙地該月時(shí)的平均氣溫為,標(biāo)準(zhǔn)差為則甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫,故①正確,乙平均氣溫的標(biāo)準(zhǔn)差小于甲的標(biāo)準(zhǔn)差,故④正確,故正確的是①④,故選:B8、D【解析】分析可知點(diǎn)的軌跡是除去長(zhǎng)軸端點(diǎn)的橢圓,求出、的值,結(jié)合橢圓焦點(diǎn)的位置可得出頂點(diǎn)的軌跡方程.【詳解】由已知可得,,且、、三點(diǎn)不共線,故點(diǎn)的軌跡是以、為焦點(diǎn),且除去長(zhǎng)軸端點(diǎn)的橢圓,由已知可得,得,,則,因此,點(diǎn)的軌跡方程為.故選:D.9、A【解析】樣本中產(chǎn)品凈重小于100克的頻率為(0.050+0.100)×2=0.3,頻數(shù)為36,∴樣本總數(shù)為.∵樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的頻率為(0.100+0.150+0.125)×2=0.75,∴樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)為120×0.75=90.考點(diǎn):頻率分布直方圖.10、B【解析】根據(jù)題意得到,根據(jù),化簡(jiǎn)得到,進(jìn)而得到離心率的不等式,即可求解.【詳解】由題意,橢圓的左頂點(diǎn)為,上頂點(diǎn)為,所以,,因?yàn)?,可得,即,又由,可得,可得,解得,又因?yàn)闄E圓的離心率,所以,即橢圓的離心率為.故選:B.【點(diǎn)睛】求解橢圓或雙曲線離心率的三種方法:1、定義法:通過(guò)已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過(guò)取特殊值或特殊位置,求出離心率.11、C【解析】先根據(jù)垂直關(guān)系設(shè)切線方程,再根據(jù)圓心到切線距離等于半徑列式解得結(jié)果.【詳解】因?yàn)榍芯€與直線平行,所以切線方程可設(shè)為因?yàn)榍芯€過(guò)點(diǎn)P(2,2),所以因?yàn)榕c圓相切,所以故選:C12、C【解析】可行域如圖,則直線過(guò)點(diǎn)A(0,1)取最大值2,則的最大值為4,選C.點(diǎn)睛:線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問(wèn)題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一,準(zhǔn)確無(wú)誤地作出可行域;二,畫目標(biāo)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大或最小值會(huì)在可行域的端點(diǎn)或邊界上取得.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵雙曲線的方程為∴,∴∴故答案為14、【解析】分離參數(shù)法得到能成立,構(gòu)造函數(shù),求出的最小值,即可求出實(shí)數(shù)a的取值范圍.【詳解】由得.設(shè),則存在,使得成立,即能成立,所以能成立,所以.又令,由對(duì)勾函數(shù)的性質(zhì)可得:在上,t(x)單調(diào)遞增,所以當(dāng)x=2時(shí),t有最小值,所以實(shí)數(shù)a的取值范圍是.故答案為:【點(diǎn)睛】導(dǎo)數(shù)的應(yīng)用主要有:(1)利用導(dǎo)函數(shù)幾何意義求切線方程;(2)利用導(dǎo)數(shù)研究原函數(shù)的單調(diào)性,求極值(最值);(3)利用導(dǎo)數(shù)求參數(shù)的取值范圍.15、【解析】由兩條直線垂直知,得16、【解析】分別對(duì),分別大于1,等于1,小于1的討論,即可.【詳解】對(duì),分別大于1,等于1,小于1的討論,當(dāng),解得當(dāng),不存在,當(dāng)時(shí),,解得,故x的范圍為點(diǎn)睛】本道題考查了分段函數(shù)問(wèn)題,分類討論,即可,難度中等三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析;(2)當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),.【解析】(1)根據(jù)等比數(shù)列的定義進(jìn)行證明即可;(2)利用分組求和法,結(jié)合錯(cuò)位相減法進(jìn)行求解即可.【小問(wèn)1詳解】由題知:所以又因?yàn)樗运詳?shù)列為以-1為首項(xiàng),-1為公比的等比數(shù)列;【小問(wèn)2詳解】由(1)知:,所以,,記,所以,當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),;記兩式相減得:,所以,所以,當(dāng)偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由題意可得關(guān)于參數(shù)的方程,解之即可得到結(jié)果;(Ⅱ)設(shè)直線AP的斜率為k,聯(lián)立方程結(jié)合韋達(dá)定理可得A點(diǎn)坐標(biāo),同理可得B點(diǎn)坐標(biāo),結(jié)合橫坐標(biāo)之差為,可得直線方程.【詳解】(Ⅰ)由拋物線方程可得焦點(diǎn)為,則橢圓C的一個(gè)頂點(diǎn)為,即.由,解得.∴橢圓C的標(biāo)準(zhǔn)方程是;(Ⅱ)由題可知點(diǎn),設(shè)直線AP的斜率為k,由題意知,直線BP的斜率為,設(shè),,直線AP的方程為,即.聯(lián)立方程組消去y得.∵P,A為直線AP與橢圓C的交點(diǎn),∴,即.把換成,得.∴,解得,當(dāng)時(shí),直線BP的方程為,經(jīng)驗(yàn)證與橢圓C相切,不符合題意;當(dāng)時(shí),直線BP的方程為,符合題意.∴直線AP得方程為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:兩條直線關(guān)于直線對(duì)稱,兩直線的傾斜角互補(bǔ),斜率互為相反數(shù).19、(1)(2)存在:【解析】(1)根據(jù)題意,列出關(guān)于a,b,c的關(guān)系,計(jì)算求值,即可得答案.(2)由(1)可得B、F點(diǎn)坐標(biāo),可得直線BF的斜率,根據(jù)F為垂心,可得,可得直線l的斜率,設(shè)出直線l的方程,與橢圓聯(lián)立,根據(jù)韋達(dá)定理,結(jié)合垂心的性質(zhì),列式求解,即可得答案.【小問(wèn)1詳解】因?yàn)榻咕酁?,所以,即,又過(guò)點(diǎn),所以,又,聯(lián)立求得,所以橢圓C的方程為【小問(wèn)2詳解】由(1)可得,所以,因?yàn)镕為垂心,直線BF與直線l垂直,所以,則,即直線l的斜率為1,設(shè)直線l的方程為,,與橢圓聯(lián)立得,,所以,因?yàn)镕為垂心,所以直線BN與直線MF垂直,所以,即,又,所以,即,所以,解得或,由,解得,又時(shí),直線l過(guò)點(diǎn)B,不符合題意,所以,所以存在直線l:,滿足題意.20、(1)證明見解析(2)存在,點(diǎn)P為棱SD靠近點(diǎn)D的三等分點(diǎn)【解析】(1)由的面積為1,得到,,由,點(diǎn)P為SD的中點(diǎn),所以,同理可得,根據(jù)線面垂直的判斷定理可得平面PAC,再由面面垂直的判斷定理可得答案;(2)存在,分別以O(shè)B,OC,OS所在直線為x,y,z軸,建立空間直角坐標(biāo)系,假設(shè)在棱SD上存在點(diǎn)P,設(shè),求出平面PAC、平面ACD的一個(gè)法向量,由二面角的向量法可得答案.【小問(wèn)1詳解】因?yàn)辄c(diǎn)S在底面ABCD上的射影為O,所以平面ABCD,因?yàn)樗倪呅蜛BCD是邊長(zhǎng)為的正方形,所以,又因?yàn)榈拿娣e為1,所以,,所以,因?yàn)?,點(diǎn)P為SD的中點(diǎn),所以,同理可得,因?yàn)?,AP,平面PAC,所以平面PAC,又平面SCD,∴平面平面PAC【小問(wèn)2詳解】存在,連接,由平面ABCD,平面ABCD,平面ABCD,又,可得兩兩垂直,分別以所在直線為x,y,z軸,建立空間直角坐標(biāo)系,如圖,則,,,,假設(shè)在棱SD上存在點(diǎn)P使二面角的余弦值為,設(shè),,,所以,,設(shè)平面PAC的一個(gè)法向量為,則,因?yàn)椋?,所以,令,得,,因?yàn)槠矫鍭CD的一個(gè)法向量為,所以,化簡(jiǎn)得,解得或(舍),所以存在P點(diǎn)符合題意,點(diǎn)P為棱SD靠近點(diǎn)D的三等分點(diǎn)21、.【解析】求得,根據(jù)其在上有兩個(gè)零點(diǎn),結(jié)合零點(diǎn)存在性定理,對(duì)參數(shù)進(jìn)行分類討論,即可求得參數(shù)的取值范圍.【詳解】因?yàn)?,所以,令,由題意可知在上有兩個(gè)不同零點(diǎn).又,若,則,故在上為增函數(shù),這與在上有兩個(gè)不同零點(diǎn)矛盾,故.當(dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,為減函數(shù),故,因?yàn)樵谏嫌袃蓚€(gè)不同零點(diǎn),故,即,即,取,,故在有一個(gè)零點(diǎn),取,,令,,則,故在為減函數(shù),因?yàn)?,故,故,故在有一個(gè)零點(diǎn),故在上有兩個(gè)零點(diǎn),故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考察利用導(dǎo)數(shù)由函數(shù)的極值點(diǎn)個(gè)數(shù)求參數(shù)的范圍
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年05月廣東中信銀行廣東廣州分行春季校園招考筆試歷年參考題庫(kù)附帶答案詳解
- 《社區(qū)服務(wù)平臺(tái)》課件
- 2025年浙教新版七年級(jí)物理上冊(cè)階段測(cè)試試卷
- 2024年曲靖市婦幼醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 2025年上教版八年級(jí)地理下冊(cè)階段測(cè)試試卷
- 2024年滬科版必修2物理下冊(cè)階段測(cè)試試卷
- 2024年浙教版高二生物上冊(cè)階段測(cè)試試卷
- 醫(yī)院特殊用電需求供用電管理辦法
- 時(shí)尚展覽館建設(shè)施工合同
- 航空服務(wù)承諾:乘務(wù)員安全守護(hù)書
- 2024版智能硬件產(chǎn)品研發(fā)合作協(xié)議3篇
- 甘肅省蘭州市第一中學(xué)2023-2024學(xué)年高一上學(xué)期期末考試 物理 含解析
- 草地調(diào)查規(guī)劃學(xué)知到智慧樹章節(jié)測(cè)試課后答案2024年秋東北農(nóng)業(yè)大學(xué)
- 2024年礦產(chǎn)資源開發(fā)咨詢服務(wù)合同
- 上海市2024-2025學(xué)年高一語(yǔ)文下學(xué)期期末試題含解析
- 國(guó)家電網(wǎng)招聘之財(cái)務(wù)會(huì)計(jì)類題庫(kù)含完整答案(必刷)
- 建筑物拆除的拆除工廠考核試卷
- 兒童文學(xué)智慧樹知到期末考試答案章節(jié)答案2024年麗水學(xué)院
- (正式版)SHT 3075-2024 石油化工鋼制壓力容器材料選用規(guī)范
- GB/T 9119-2010板式平焊鋼制管法蘭
- 變電站電氣一次工程監(jiān)理要點(diǎn)重點(diǎn)
評(píng)論
0/150
提交評(píng)論