2023-2024學年江蘇省南通市通州、海安數(shù)學高二上期末監(jiān)測模擬試題含解析_第1頁
2023-2024學年江蘇省南通市通州、海安數(shù)學高二上期末監(jiān)測模擬試題含解析_第2頁
2023-2024學年江蘇省南通市通州、海安數(shù)學高二上期末監(jiān)測模擬試題含解析_第3頁
2023-2024學年江蘇省南通市通州、海安數(shù)學高二上期末監(jiān)測模擬試題含解析_第4頁
2023-2024學年江蘇省南通市通州、海安數(shù)學高二上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省南通市通州、海安數(shù)學高二上期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知甲、乙、丙三名同學同時獨立地解答一道導數(shù)試題,每人均有的概率解答正確,且三個人解答正確與否相互獨立,在三人中至少有兩人解答正確的條件下,甲解答不正確的概率A. B.C. D.2.過點且平行于直線的直線的方程為()A. B.C. D.3.已知橢圓的右焦點為F,短軸的一個端點為P,直線與橢圓相交于A、B兩點.若,點P到直線l的距離不小于,則橢圓C離心率的取值范圍為()A. B.C. D.4.已知,若與的展開式中的常數(shù)項相等,則()A.1 B.3C.6 D.95.已知奇函數(shù)是定義在R上的可導函數(shù),的導函數(shù)為,當時,有,則不等式的解集為()A. B.C. D.6.已知橢圓+=1(a>b>0)的右焦點為F(3,0),過點F的直線交橢圓于A、B兩點.若AB的中點坐標為(1,-1),則E的方程為A.+=1 B.+=1C.+=1 D.+=17.在等差數(shù)列中,為其前項和,若.則()A. B.C. D.8.已知是拋物線上的一個動點,是圓上的一個動點,是一個定點,則的最小值為A. B.C. D.9.設,,則與的等比中項為()A. B.C. D.10.俗話說“好貨不便宜,便宜沒好貨”,依此判斷,“不便宜”是“好貨”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件11.過拋物線的焦點F的直線l與拋物線交于PQ兩點,若以線段PQ為直徑的圓與直線相切,則()A.8 B.7C.6 D.512.拋物線的焦點到準線的距離()A.4 B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓心坐標為圓被直線截得的弦長為,則圓的半徑為______.14.與雙曲線有共同的漸近線,并且經過點的雙曲線方程是______15.已知春季里,甲地每天下雨的概率為,乙地每天下雨的概率大于0,且甲、乙兩地下雨相互獨立,則春季的一天里,已知乙地下雨的條件下,甲地也下雨的概率為___________.16.已知函數(shù),則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)圓經過兩點,且圓心在直線上.(1)求圓的方程;(2)求圓與圓的公共弦的長.18.(12分)在中,角,,所對的邊分別為,,,其外接圓半徑為,已知(1)求角;(2)若邊的長是該邊上高的倍,求19.(12分)已知是公差不為零等差數(shù)列,,且、、成等比數(shù)列(1)求數(shù)列的通項公式:(2)設.數(shù)列{}的前項和為,求證:20.(12分)已知函數(shù)(其中為自然對數(shù)底數(shù))(1)討論函數(shù)的單調性;(2)當時,若恒成立,求實數(shù)的取值范圍.21.(12分)某廠有4臺大型機器,在一個月中,一臺機器至多出現(xiàn)1次故障,出現(xiàn)故障時需1名工人進行維修,且每臺機器是否出現(xiàn)故障是相互獨立的,每臺機器出現(xiàn)故障的概率為(1)若出現(xiàn)故障的機器臺數(shù)為X,求X的分布列;(2)已知一名工人每月只有維修1臺機器的能力,每月需支付給每位工人1萬元的工資,每臺機器不出現(xiàn)故障或出現(xiàn)故障時能及時維修,都產生5萬元的利潤,否則將不產生利潤.若該廠在雇傭維修工人時,要保證在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修的概率不小于90%,雇傭幾名工人使該廠每月獲利最大?22.(10分)已知對于,函數(shù)有意義,關于k的不等式成立.(1)若為假命題,求k的取值范圍;(2)若p是q的必要不充分條件,求m的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】記“三人中至少有兩人解答正確”為事件;“甲解答不正確”為事件,利用二項分布的知識計算出,再計算出,結合條件概率公式求得結果.【詳解】記“三人中至少有兩人解答正確”為事件;“甲解答不正確”為事件則;本題正確選項:【點睛】本題考查條件概率的求解問題,涉及到利用二項分布公式求解概率的問題.2、B【解析】根據(jù)平行設直線方程,代入點計算得到答案.【詳解】設直線方程為,將點代入直線方程得到,解得.故直線方程為:.故選:B.3、D【解析】設橢圓的左焦點為,由題可得,由點P到直線l的距離不小于可得,進而可求的范圍,即可得出離心率范圍.【詳解】設橢圓的左焦點為,P為短軸的上端點,連接,如圖所示:由橢圓的對稱性可知,A,B關于原點對稱,則,又,∴四邊形為平行四邊形,∴,又,解得:,點P到直線l距離:,解得:,即,∴,∴.故選:D.【點睛】關鍵點睛:本題考查橢圓離心率的求解,解題的關鍵是由橢圓定義得出,再根據(jù)已知條件得出.4、B【解析】根據(jù)二項展開式的通項公式即可求出【詳解】的展開式中的常數(shù)項為,而的展開式中的常數(shù)項為,所以,又,所以故選:B5、B【解析】根據(jù)給定的不等式構造函數(shù),再探討函數(shù)的性質,借助性質解不等式作答.【詳解】依題意,令,因是R上的奇函數(shù),則,即是R上的奇函數(shù),當時,,則有在單調遞增,又函數(shù)在R上連續(xù),因此,函數(shù)在R上單調遞增,不等式,于是得,解得,所以原不等式的解集是.故選:B6、D【解析】設、,所以,運用點差法,所以直線的斜率為,設直線方程為,聯(lián)立直線與橢圓的方程,所以;又因為,解得.【考點定位】本題考查直線與圓錐曲線的關系,考查學生的化歸與轉化能力.7、C【解析】利用等差數(shù)列的性質和求和公式可求得的值.【詳解】由等差數(shù)列的性質和求和公式可得.故選:C.8、A【解析】恰好為拋物線的焦點,等于到準線的距離,要想最小,過圓心作拋物線的準線的垂線交拋物線于點,交圓于,最小值等于圓心到準線的距離減去半徑4-1=.考點:1.拋物線的定義;2.圓中的最值問題;9、C【解析】利用等比中項的定義可求得結果.【詳解】由題意可知,與的等比中項為.故選:C.10、A【解析】將“好貨”與“不便宜”進行相互推理即可求得答案.【詳解】根據(jù)題意,“好貨”一定“不便宜”,但是“不便宜”不一定是“好貨”,所以“不便宜”是“好貨”的必要不充分條件.故選:A.11、C【解析】依據(jù)拋物線定義可以證明:以過拋物線焦點F的弦PQ為直徑的圓與其準線相切,則可以順利求得線段的長.【詳解】拋物線的焦點F,準線取PQ中點H,分別過P、Q、H作拋物線準線的垂線,垂足分別為N、M、E則四邊形為直角梯形,為梯形中位線,由拋物線定義可知,,,則故,即點H到拋物線準線的距離為的一半,則以線段PQ為直徑的圓與拋物線的準線相切.又以線段PQ為直徑的圓與直線相切,則以線段PQ為直徑的圓的直徑等于直線與直線間的距離.即故選:C12、A【解析】寫出拋物線的標準方程,即可確定焦點到準線的距離.【詳解】由題設,拋物線的標準方程為,則,∴焦點到準線的距離為4.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用垂徑定理計算即可.【詳解】設圓的半徑為,則,得.故答案為:.14、【解析】設雙曲線的方程為,將點代入方程可求的值,從而可得結果【詳解】設與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經過點,所求的雙曲線方程為:,整理得故答案為【點睛】本題考查雙曲線的方程與簡單性質,意在考查靈活應用所學知識解答問題的能力,屬于中檔題.與共漸近線的雙曲線方程可設為,只需根據(jù)已知條件求出即可.15、##0.5【解析】根據(jù)條件概率求概率的方法即可求得答案.【詳解】設A表示“甲地每天下雨”,B表示“乙地每天下雨”,乙地每天下雨的概率為p,則,因為甲乙兩地下雨相互獨立,所以,于是在乙地下雨的條件下,甲地也下雨的概率為.故答案為:.16、2【解析】根據(jù)導數(shù)的計算法則計算即可.【詳解】∵,∴,∴∴.故答案為:2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設圓的方程為,代入所過的點后可求,從而可求圓的方程.(2)利用兩圓的方程可求公共弦的方程,利用垂徑定理可求公共弦的弦長.【小問1詳解】設圓的方程為,,,所以圓的方程為;【小問2詳解】由圓的方程和圓的方程可得公共弦的方程為:,整理得到:,到公共弦距離為,故公共弦的弦長為:.18、(1);(2)【解析】(1)利用正弦定理將角化邊,再利用余弦定理計算可得;(2)記邊上的高為,不妨設,即可求出,再利用余弦定理求出,在中,記,根據(jù)銳角三角函數(shù)求出,,最后根據(jù),利用兩角和的余弦公式計算可得;【詳解】解:(1)由已知條件,所以,所以所以,,由余弦定理可得,而,于是(2)記邊上的高為,不妨設,則,,,所以,由余弦定理得,在中,記,則,,所以19、(1);(2)證明見解析.【解析】(1)設等差數(shù)列的公差為,則,根據(jù)題意可得出關于的方程,求出的值,利用等差數(shù)列的通項公式可求得數(shù)列的通項公式;(2)求得,利用裂項相消法求出,即可證得結論成立.【小問1詳解】解:設等差數(shù)列的公差為,則,由題意可得,即,整理可得,,解得,因此,.【小問2詳解】證明:,因此,,故原不等式得證.20、(1)答案見解析(2)【解析】(1),進而分,,三種情況討論求解即可;(2)由題意知在上恒成立,故令,再根據(jù)導數(shù)研究函數(shù)的最小值,注意到使,進而結合函數(shù)隱零點求解即可.【小問1詳解】解:①,在上單調增;②,令,單調減單調增;③,單調增單調減.綜上,當時,在上單調增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞增,在上單調遞減.【小問2詳解】解:由題意知在上恒成立,令,,單調遞增∵,∴使得,即單調遞減;單調遞增,令,則在上單調增,∴實數(shù)的取值范圍是21、(1)答案見解析(2)雇傭3名【解析】(1)設出現(xiàn)故障的機器臺數(shù)為X,由題意知,即可由二項分布求解;(2)設該廠雇傭n名工人,n可取0、1、2、3、4,先求出保證在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修的概率不小于90%需要至少3人,再分別計算3人,4人時的獲利即可得解.【小問1詳解】每臺機器運行是否出現(xiàn)故障看作一次實驗,在一次試驗中,機器出現(xiàn)故障的概率為,4臺機器相當于4次獨立試驗設出現(xiàn)故障的機器臺數(shù)為X,則,,,,,,則X的分布列為:X01234P【小問2詳解】設該廠雇傭n名工人,n可取0、1、2、3、4,設“在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修”的概率為,則:n01234P1∵,∴至少要3名工人,才能保證在任何時刻多臺機器同時出現(xiàn)故障時能及時進行維修的概率不小于90%當該廠雇傭3名工人時,設該廠獲利為Y萬元,則Y的所有可能取值為17,12,,,∴Y的分布列為:Y1712P∴,∴該廠獲利的均值為16.9萬元當該廠雇傭4名工人時,4臺機器在任何時刻同時出現(xiàn)故障時能及時進行維修的概率為100%,該廠獲利的均值為萬元∴若該廠要保證在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修的概率不小于90%時,雇傭3名工人使該廠每月獲利最大22、(1)(2)【解析】(1)由與的真假相反

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論