版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年江蘇南京市、鹽城市數(shù)學高二上期末學業(yè)水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(,)的左、右焦點分別為,,點A的坐標為,點P是雙曲線在第二象限的部分上一點,且,點Q是線段的中點,且,Q關(guān)于直線PA對稱,則雙曲線的離心率為()A.3 B.2C. D.2.阿基米德既是古希臘著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的中心為原點,焦點、在軸上,橢圓的面積為,且離心率為,則的標準方程為()A. B.C. D.3.拋物線的焦點到準線的距離為()A. B.C. D.14.在等比數(shù)列中,,且,則t=()A.-2 B.-1C.1 D.25.已知,則()A. B.C. D.6.已知函數(shù)對于任意的滿足,其中是函數(shù)的導函數(shù),則下列各式正確的是()A. B.C. D.7.某程序框圖如圖所示,該程序運行后輸出的值是()A. B.C. D.8.設aR,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.執(zhí)行如圖所示的程序框圖,則輸出的A. B.C. D.10.已知集合A=()A. B.C.或 D.11.中,,,分別為三個內(nèi)角,,的對邊,若,,,則()A. B.C. D.12.已知數(shù)列滿足,且,那么()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量與是平面的兩個法向量,則__________14.直線l過拋物線的焦點F,與拋物線交于A,B兩點,與其準線交于點C,若,則直線l的斜率為______.15.斐波那契數(shù)列,又稱“兔子數(shù)列”,由數(shù)學家斐波那契研究兔子繁殖問題時引入.已知斐波那契數(shù)列滿足,,,若記,,則________.(用,表示)16.有一組數(shù)據(jù),其平均數(shù)為3,方差為2,則新的數(shù)據(jù)的方差為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若與相交于A、兩點,設,求.18.(12分)阿基米德(公元前年—公元前年)不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸與短半軸的乘積.已知平面直角坐標系中,橢圓:的面積為,兩焦點與短軸的一個頂點構(gòu)成等邊三角形.(1)求橢圓的標準方程;(2)過點的直線與交于不同的兩點,求面積的最大值.19.(12分)已知的內(nèi)角的對邊分別為a,,若向量,且(1)求角的值;(2)已知的外接圓半徑為,求周長的最大值.20.(12分)已知拋物線的焦點為,直線與拋物線交于,兩點,且(1)求拋物線的方程;(2)若,是拋物線上一點,過點的直線與拋物線交于,兩點(均與點不重合),設直線,的斜率分別為,,求證:為定值21.(12分)已知三角形內(nèi)角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.22.(10分)在數(shù)列中,,且,(1)求的通項公式;(2)求的前n項和的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由角平分線的性質(zhì)可得,結(jié)合已知條件即可求雙曲線的離心率.【詳解】由題設,易知:,由知:,即,整理得:.故選:C2、A【解析】設橢圓方程為,解方程組即得解.【詳解】解:設橢圓方程為,由題意可知,橢圓的面積為,且、、均為正數(shù),即,解得,因為橢圓的焦點在軸上,所以的標準方程為.故選:A.3、B【解析】由可得拋物線標椎方程為:,由焦點和準線方程即可得解.【詳解】由可得拋物線標準方程為:,所以拋物線的焦點為,準線方程為,所以焦點到準線的距離為,故選:B【點睛】本題考了拋物線標準方程,考查了焦點和準線相關(guān)基本量,屬于基礎題.4、A【解析】先求出,利用等比中項求出t.【詳解】在等比數(shù)列中,,且,所以所以,即,解得:.當時,,不符合等比數(shù)列的定義,應舍去,故.故選:A.5、B【解析】根據(jù)基本初等函數(shù)的導數(shù)公式及求導法則求導函數(shù)即可.【詳解】.故選:B.6、C【解析】令,結(jié)合題意可得,利用導數(shù)討論函數(shù)的單調(diào)性,進而得出,變形即可得出結(jié)果.【詳解】令,則,又,所以,令,令,所以函數(shù)在上單調(diào)遞減,在單調(diào)遞增,所以,即,則.故選:C7、B【解析】模擬程序運行后,可得到輸出結(jié)果,利用裂項相消法即可求出答案.【詳解】模擬程序運行過程如下:0),判斷為否,進入循環(huán)結(jié)構(gòu),1),判斷為否,進入循環(huán)結(jié)構(gòu),2),判斷為否,進入循環(huán)結(jié)構(gòu),3),判斷為否,進入循環(huán)結(jié)構(gòu),……9),判斷為否,進入循環(huán)結(jié)構(gòu),10),判斷為是,故輸出,故選:B.【點睛】本題主要考查程序框圖,考查裂項相消法,難度不大.一般遇見程序框圖求輸出結(jié)果時,常模擬程序運行以得到結(jié)論.8、A【解析】運用兩直線平行的充要條件得出l1與l2平行時a的值,而后運用充分必要條件的知識來解決即可解:∵當a=1時,直線l1:x+2y﹣1=0與直線l2:x+2y+4=0,兩條直線的斜率都是﹣,截距不相等,得到兩條直線平行,故前者是后者的充分條件,∵當兩條直線平行時,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要條件故選A考點:必要條件、充分條件與充要條件的判斷;直線的一般式方程與直線的平行關(guān)系9、B【解析】根據(jù)輸入的條件執(zhí)行循環(huán),并且每一次都要判斷結(jié)論是或否,直至退出循環(huán).【詳解】,,,;,【點睛】本題考查程序框圖,執(zhí)行循環(huán),屬于基礎題.10、A【解析】先求出集合,再根據(jù)集合的交集運算,即可求出結(jié)果.【詳解】因為集合,所以.故選:A.11、C【解析】利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:C.12、D【解析】由遞推公式得到,,,再結(jié)合已知即可求解.【詳解】解:由,得,,又,那么故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由且為非零向量可直接構(gòu)造方程求得,進而得到結(jié)果.【詳解】由題意知:,,解得:(舍)或,.故答案為:.14、【解析】由拋物線方程求出焦點坐標與準線方程,設直線為,、,即可得到的坐標,再聯(lián)立直線與拋物線方程,消元列出韋達定理,表示出、的坐標,根據(jù)得到方程,求出,即可得解;【詳解】解:拋物線方程為,則焦點,準線為,設直線為,、,則,由,消去得,所以,,則,,因為,所以,所以,所以,解得,所以,即直線為,所以直線的斜率為;故答案為:15、【解析】由已知兩式相加求得,得,得到,從而得到,,利用可得答案.【詳解】因為,由,,得,所以,得,因為,所以,,所以,,所以,.故答案為:.16、2【解析】由已知得,,然后計算的平均數(shù)和方差可得答案.【詳解】由已知得,,所以,.故答案為:2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)曲線的普通方程為;曲線的直角坐標方程為(2)【解析】(1)直接利用轉(zhuǎn)換關(guān)系式把參數(shù)方程和極坐標方程轉(zhuǎn)化為直角坐標方程;(2)易得滿足直線的方程,轉(zhuǎn)化為參數(shù)方程,代入曲線的普通方程,再利用韋達定理結(jié)合弦長公式即可得出答案.【小問1詳解】解:曲線的參數(shù)方程為(為參數(shù)),轉(zhuǎn)化為普通方程為,曲線的極坐標方程為,即,根據(jù),轉(zhuǎn)化為直角坐標方程為;【小問2詳解】解:因為滿足直線的方程,將轉(zhuǎn)化為參數(shù)方程為(為參數(shù)),代入,得,設A、兩點的參數(shù)分別為,則,所以.18、(1);(2).【解析】(1)根據(jù)題意計算得到,得到橢圓方程.(2)設直線的方程為,聯(lián)立方程,根據(jù)韋達定理得到,,表示出,解得答案.【詳解】(1)依題意有解得所以橢圓的標準方程是.(2)由題意直線的斜率不能為,設直線的方程為,由方程組得,設,,所以,,所以,所以,令(),則,,因為在上單調(diào)遞增,所以當,即時,面積取得最大值為.【點睛】本題考查了橢圓方程,橢圓內(nèi)三角形面積的最值問題,意在考查學生的計算能力和綜合應用能力.19、(1)(2)6【解析】(1)由可得,再利用正弦定理和三角函數(shù)恒等變換公可得,從而可求出角的值,(2)利用正弦定理求出,再利用余弦定理結(jié)合基本不等式可得的最大值為4,從而可求出三角形周長的最大值【小問1詳解】由,得
,由正弦定理,得,即.在中,由,得.又,所以.【小問2詳解】根據(jù)題意,得,由余弦定理,得,即,整理得,當且僅當時,取等號,所以的最大值為所以.所以的周長的最大值為
.20、(1)(2)證明見解析【解析】(1)聯(lián)立直線和拋物線方程,根據(jù)拋物線定義和焦半徑公式得到,根據(jù)韋達定理可得到最終結(jié)果;(2)代入點坐標可得到參數(shù)的值,設直線的方程為,聯(lián)立該直線和拋物線方程,,代入韋達定理可得到最終結(jié)果.【小問1詳解】設點,,點,,聯(lián)立,整理得,,由拋物線的定義知,解得,拋物線的方程為【小問2詳解】,為拋物線上一點,,即,設,,,,直線的方程為,由,消去得,,,,即為定值21、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關(guān)系結(jié)合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進一步求得面積【小問1詳解】因為,由正弦定理得因為,所以.因為角為鈍角,所以角為銳角,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025代理商供銷合同范文
- 2024年度天津市公共營養(yǎng)師之三級營養(yǎng)師題庫綜合試卷B卷附答案
- 2024年度四川省公共營養(yǎng)師之四級營養(yǎng)師自測模擬預測題庫
- 2024年度四川省公共營養(yǎng)師之三級營養(yǎng)師模擬試題(含答案)
- 2025關(guān)于借款合同的還款期限規(guī)定
- 2025關(guān)于房屋裝修合同
- 2024年纖維素醚項目可行性分析報告
- 2025隨身郵銷售合同書
- 2025年中國數(shù)字化超聲診斷儀市場發(fā)展策略及投資潛力可行性預測報告
- 2025魚塘經(jīng)營承包合同樣本
- 醫(yī)療器械經(jīng)營質(zhì)量管理制度匯編
- 中國八大植被區(qū)域劃分
- 廠內(nèi)機動叉車日常檢查記錄表
- 各類儀器儀表校驗記錄表18篇
- 自動生產(chǎn)排程 SMT 多線體 版
- 防造假管理程序文件
- 譯林版英語八年級上冊單詞表
- 中石油職稱英語
- 2023年副主任醫(yī)師(副高)-神經(jīng)內(nèi)科學(副高)考試歷年真題薈萃帶答案
- 國家義務教育質(zhì)量監(jiān)測科學四年級創(chuàng)新作業(yè)測試卷【附答案】
- 硫磺安全技術(shù)說明書MSDS
評論
0/150
提交評論