版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年四川省樂山市井研縣井研中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.2.?dāng)?shù)列滿足,則數(shù)列的前n項(xiàng)和為()A. B.C. D.3.在流行病學(xué)中,基本傳染數(shù)是指在沒有外力介入,同時(shí)所有人都沒有免疫力的情況下,一個(gè)感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.假設(shè)某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過1000人大約需要()(初始感染者傳染個(gè)人為第一輪傳染,這個(gè)人每人再傳染個(gè)人為第二輪傳染)A.20天 B.24天C.28天 D.32天4.已知雙曲線的右焦點(diǎn)為,以為圓心,以為半徑的圓與雙曲線的一條漸近線交于,兩點(diǎn),若(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為().A. B.C. D.5.△ABC兩個(gè)頂點(diǎn)坐標(biāo)A(-4,0),B(4,0),它的周長(zhǎng)是18,則頂點(diǎn)C的軌跡方程是()A. B.(y≠0)C. D.6.已知橢圓:的離心率為,則實(shí)數(shù)()A. B.C. D.7.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點(diǎn),且線段的中點(diǎn)為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.8.對(duì)任意實(shí)數(shù),在以下命題中,正確的個(gè)數(shù)有()①若,則;②若,則;③若,則;④若,則A. B.C. D.9.在空間直角坐標(biāo)系中,已知點(diǎn),,則線段的中點(diǎn)坐標(biāo)與向量的模長(zhǎng)分別是()A.;5 B.;C.; D.;10.展開式中第3項(xiàng)的二項(xiàng)式系數(shù)為()A.6 B.C.24 D.11.在公比為為q等比數(shù)列中,是數(shù)列的前n項(xiàng)和,若,則下列說法正確的是()A. B.數(shù)列是等比數(shù)列C. D.12.繞著它的一邊旋轉(zhuǎn)一周得到的幾何體可能是()A.圓臺(tái) B.圓臺(tái)或兩個(gè)圓錐的組合體C.圓錐或兩個(gè)圓錐的組合體 D.圓柱二、填空題:本題共4小題,每小題5分,共20分。13.已知是首項(xiàng)為,公差為1的等差數(shù)列,數(shù)列滿足,若對(duì)任意的,都有成立,則實(shí)數(shù)的取值范圍是________14.雙曲線的離心率為2,寫出滿足條件的一個(gè)雙曲線的標(biāo)準(zhǔn)方程__________.15.以正方體的對(duì)角線的交點(diǎn)為坐標(biāo)原點(diǎn)O建立右手系的空間直角坐標(biāo)系,其中,,,則點(diǎn)的坐標(biāo)為______16.已知,用割線逼近切線的方法可以求得___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在四邊形ABCD中,,,E是AD的中點(diǎn),將沿BF折起至的位置,使得二面角的大小為120°(如圖2),M,N分別是,的中點(diǎn).(1)證明:平面;(2)求平面與平面夾角的余弦值.18.(12分)已知橢圓的焦點(diǎn)為,且長(zhǎng)軸長(zhǎng)是焦距的倍(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若斜率為1的直線與橢圓相交于兩點(diǎn),已知點(diǎn),求面積的最大值19.(12分)(1)求焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程;(2)求經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程;20.(12分)已知點(diǎn)為橢圓C的右焦點(diǎn),P為橢圓上一點(diǎn),且(O為坐標(biāo)原點(diǎn)),.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)經(jīng)過點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),求弦的取值范圍.21.(12分)在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2AB=2(1)求四棱錐P﹣ABCD的體積V;(2)若F為PC的中點(diǎn),求證PC⊥平面AEF22.(10分)某書店剛剛上市了《中國(guó)古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每種單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊(cè))數(shù)據(jù):?jiǎn)蝺r(jià)(元)1819202122銷量(冊(cè))6156504845(l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線方程:(2)預(yù)計(jì)今后的銷售中,銷量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每?jī)?cè)書的成本是12元,書店為了獲得最大利潤(rùn),該冊(cè)書的單價(jià)應(yīng)定為多少元?附:,,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由題意,即在區(qū)間上有兩個(gè)異號(hào)零點(diǎn),令,利用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系判斷單調(diào)性,數(shù)形結(jié)合即可求解【詳解】解:由題意,即在區(qū)間上有兩個(gè)異號(hào)零點(diǎn),構(gòu)造函數(shù),則,令,得,令,得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又時(shí),,時(shí),,且,所以,即,所以的范圍故選:D2、D【解析】利用等差數(shù)列的前n項(xiàng)和公式得到,進(jìn)而得到,利用裂項(xiàng)相消法求和.【詳解】依題意得:,,,故選:D3、B【解析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計(jì)算n輪傳染后感染的總?cè)藬?shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經(jīng)過n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要24天,故選:B【點(diǎn)睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡(jiǎn)化運(yùn)算過程4、A【解析】設(shè)雙曲線的一條漸近線方程為,為的中點(diǎn),可得,由,可知為的三等分點(diǎn),用兩種方式表示,可得關(guān)于的方程組,結(jié)合即可得到雙曲線的離心率.【詳解】設(shè)雙曲線的一條漸近線方程為,為的中點(diǎn),可得,由到漸近線的距離為,所以,又,所以,因?yàn)椋?,整理可得:,即,所以,可得,所以,所以雙曲線的離心率為,故選:A.5、D【解析】根據(jù)三角形的周長(zhǎng)得出,再由橢圓的定義得頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,可求得頂點(diǎn)C的軌跡方程.【詳解】因?yàn)?,所以,所以頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,即,所以頂點(diǎn)C的軌跡方程是,故選:D.【點(diǎn)睛】本題考查橢圓的定義,由定義求得動(dòng)點(diǎn)的軌跡方程,求解時(shí),注意去掉不滿足的點(diǎn),屬于基礎(chǔ)題.6、C【解析】根據(jù)題意,先求得的值,代入離心率公式,即可得答案.【詳解】因?yàn)椋运?,解?故選:C7、C【解析】設(shè),代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設(shè),則,相減得,∴,又線段的中點(diǎn)為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點(diǎn)睛】方法點(diǎn)睛:本題考查求雙曲線的漸近線方程,已知弦的中點(diǎn)(或涉及到中點(diǎn)),可設(shè)弦兩端點(diǎn)的坐標(biāo),代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點(diǎn)坐標(biāo),有.這種方法叫點(diǎn)差法8、B【解析】直接利用不等式的基本性質(zhì)判斷.【詳解】①因?yàn)?,則,根據(jù)不等式性質(zhì)得,故正確;②當(dāng)時(shí),,而,故錯(cuò)誤;③因?yàn)椋?,即,故正確;④當(dāng)時(shí),,故錯(cuò)誤;故選:B9、B【解析】根據(jù)給定條件利用中點(diǎn)坐標(biāo)公式及空間向量模長(zhǎng)的坐標(biāo)表示計(jì)算作答.【詳解】因點(diǎn),,所以線段的中點(diǎn)坐標(biāo)為,.故選:B10、A【解析】根據(jù)二項(xiàng)展開式的通項(xiàng)公式,即可求解.【詳解】由題意,二項(xiàng)式展開式中第3項(xiàng),所以展開式中第3項(xiàng)的二項(xiàng)式系數(shù)為.故選:A.11、D【解析】根據(jù)等比數(shù)列的通項(xiàng)公式、前項(xiàng)和公式的基本量運(yùn)算,即可得到答案;【詳解】,,故A錯(cuò)誤;,,顯然數(shù)列不是等比數(shù)列,故B錯(cuò)誤;,故C錯(cuò)誤;,,故D成立;故選:D12、C【解析】討論是按直角邊旋轉(zhuǎn)還是按斜邊旋轉(zhuǎn)【詳解】按直角邊選擇可得下圖圓錐:如果按直角邊旋轉(zhuǎn)可得下圖的兩個(gè)圓錐的組合體:故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求得,再得出,對(duì)于任意的,都有成立,說明是中的最小項(xiàng)【詳解】由題意,∴,易知函數(shù)在和上都是減函數(shù),且時(shí),,即,時(shí),,,由題意對(duì)于任意的,都有成立,則是最小項(xiàng),∴,解得,故答案為:14、(答案不唯一例如:等,只需滿足即可)【解析】根據(jù)離心率和的關(guān)系,可得到,只要滿足以上關(guān)系的即可【詳解】由題可知,又,所以,只要滿足以上關(guān)系即可.,答案不唯一例如:等故答案為:(答案不唯一例如:等,只需滿足即可)15、【解析】根據(jù)已知點(diǎn)的坐標(biāo),確定出坐標(biāo)系即可得【詳解】如圖,由已知得坐標(biāo)系如圖所示,軸過正方形的對(duì)角線交點(diǎn),軸過中點(diǎn),軸過中點(diǎn),因此可知坐標(biāo)為故答案為:16、【解析】根據(jù)導(dǎo)數(shù)的定義直接計(jì)算即可【詳解】因?yàn)?,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)構(gòu)造中位線,利用面面平行,可以證明;(2)建立空間直角坐標(biāo)系,用空間向量的方法即可.【小問1詳解】證明:如圖,取ED的中點(diǎn)P,連接MP,NP.在平行四邊形ABCD中,因?yàn)镋是AD的中點(diǎn),,所以,又,所以四邊形BCDE是平行四邊形;因?yàn)镸,N分別是,BC的中點(diǎn),所以,.又平面,平面,所以平面,平面.因?yàn)?,所以平面平?又平面,所以平面【小問2詳解】取BE的中點(diǎn)O,連接,CO,CE.在圖1中,因?yàn)?,所以是等邊三角形,,又四邊形ABCD等腰梯形,所以,即是等邊三角形;所以如圖,,,所以.以為原點(diǎn),射線OB為x軸的正半軸建立如圖所示的空間直角坐標(biāo)系.因?yàn)椋瑒t,,,,則,設(shè)平面的法向量為,,得令,則,,即,由題可知,平面BCD的一個(gè)法向量為,.由圖可知,平面與平面BDC夾角余弦值為;18、(1);(2)1.【解析】(1)根據(jù)給定條件求出橢圓半焦距c,長(zhǎng)短半軸長(zhǎng)a,b即可得解.(2)設(shè)出直線的方程,再與橢圓C的方程聯(lián)立,求出弦AB長(zhǎng)及點(diǎn)P到直線的距離,然后求出面積的表達(dá)式并求其最大值即得.【小問1詳解】設(shè)橢圓的標(biāo)準(zhǔn)方程為,依題意,半焦距,,即,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】依題意,設(shè)直線,,由消去y并整理得:,由,解得,則有,,于是得,而點(diǎn)到直線的距離為,因此,的面積,當(dāng)且僅當(dāng),即時(shí)取“=”,所以面積最大值為1.【點(diǎn)睛】結(jié)論點(diǎn)睛:直線l:y=kx+b上兩點(diǎn)間的距離;直線l:x=my+t上兩點(diǎn)間的距離.19、(1);(2)或.【解析】(1)由虛軸長(zhǎng)是12求出半虛軸b,根據(jù)雙曲線的性質(zhì)c2=a2+b2以及離心率,求出a2,寫出雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè)出拋物線方程,利用經(jīng)過,求出拋物線中的參數(shù),即可得到拋物線方程【詳解】焦點(diǎn)在x軸上,設(shè)所求雙曲線的方程為=1(a>0,b>0)由題意,得解得b=6,解得,所以焦點(diǎn)在x軸上的雙曲線的方程為(2)由于點(diǎn)P在第三象限,所以拋物線方程可設(shè)為:或(p>0)當(dāng)方程為,將點(diǎn)代入得16=4p,即p=4,拋物線方程為:;當(dāng)方程為,將點(diǎn)代入得4=8p,即p=,拋物線方程為:;20、(1)(2)【解析】(1)利用橢圓定義求得橢圓的即可解決;(2)經(jīng)過點(diǎn)的直線l分為斜率不存在和存在兩種情況,分別去求弦,再去求其取值范圍即可.【小問1詳解】由題意得.記左焦點(diǎn)為,,則,,解得.由橢圓定義得:,則,所以橢圓C的方程為:.【小問2詳解】①當(dāng)直線l的斜率不存在時(shí),.②當(dāng)直線l的斜率存在時(shí),設(shè)斜率為k,則l的方程為.聯(lián)立橢圓與直線的方程(由于點(diǎn)在橢圓內(nèi),∴成立),且,,令,則,,,由得,綜上所述,弦的取值范圍為.【點(diǎn)睛】(1)解答直線與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系(2)涉及到直線方程的設(shè)法時(shí),務(wù)必考慮全面,不要忽略直線斜率為0或不存在等特殊情形21、(1)(2)見解析.【解析】(1)在中,,求得,由此能求出四棱錐的體積;(2)由平面,證得和,由此利用線面垂直的判定定理,即可證得平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年華師大新版九年級(jí)地理上冊(cè)月考試卷含答案
- 2025年太湖創(chuàng)意職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)試近5年??及鎱⒖碱}庫(kù)含答案解析
- 2025年太原幼兒師范高等??茖W(xué)校高職單招高職單招英語(yǔ)2016-2024歷年頻考點(diǎn)試題含答案解析
- 2025至2031年中國(guó)長(zhǎng)袖襯衫行業(yè)投資前景及策略咨詢研究報(bào)告
- 二零二五年度租賃鋼板安全使用培訓(xùn)合同
- 2025年度臍橙種植保險(xiǎn)合同書復(fù)合風(fēng)險(xiǎn)管理版
- 2025年度路邊廣告牌廣告資源托管及推廣服務(wù)合同
- 2025年度茶葉產(chǎn)業(yè)鏈金融服務(wù)合同電子版
- 2025年度門面轉(zhuǎn)讓及商業(yè)運(yùn)營(yíng)管理合同
- 二零二五年度員工勞動(dòng)合同解除協(xié)議書范本
- 創(chuàng)新創(chuàng)業(yè)教育課程體系
- 包裝品質(zhì)彩盒外箱知識(shí)課件
- 神經(jīng)外科課件:神經(jīng)外科急重癥
- 頸復(fù)康腰痛寧產(chǎn)品知識(shí)課件
- 2024年低壓電工證理論考試題庫(kù)及答案
- 微電網(wǎng)市場(chǎng)調(diào)查研究報(bào)告
- 《民航服務(wù)溝通技巧》教案第14課民航服務(wù)人員上行溝通的技巧
- MT/T 538-1996煤鉆桿
- 小學(xué)六年級(jí)語(yǔ)文閱讀理解100篇(及答案)
- CB/T 467-1995法蘭青銅閘閥
- 氣功修煉十奧妙
評(píng)論
0/150
提交評(píng)論