2023-2024學年廣東省韶關市高二上數(shù)學期末預測試題含解析_第1頁
2023-2024學年廣東省韶關市高二上數(shù)學期末預測試題含解析_第2頁
2023-2024學年廣東省韶關市高二上數(shù)學期末預測試題含解析_第3頁
2023-2024學年廣東省韶關市高二上數(shù)學期末預測試題含解析_第4頁
2023-2024學年廣東省韶關市高二上數(shù)學期末預測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023-2024學年廣東省韶關市高二上數(shù)學期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線在點處的切線方程是()A. B.C. D.2.函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.3.已知是虛數(shù)單位,若復數(shù)滿足,則()A. B.2C. D.44.已知數(shù)列滿足,其前項和為,,.若數(shù)列的前項和為,則滿足成立的的最小值為()A.10 B.11C.12 D.135.已知數(shù)列為等比數(shù)列,則“為常數(shù)列”是“成等差數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件6.已知圓的方程為,則圓心的坐標為()A. B.C. D.7.雙曲線的漸近線方程為A. B.C. D.8.設等差數(shù)列,前n項和分別是,若,則()A.1 B.C. D.9.已知,若對于且都有成立,則實數(shù)的取值范圍是()A. B.C. D.10.設函數(shù)在R上可導,則()A. B.C. D.以上都不對11.如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A,B,交其準線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()A.y2=9x B.y2=6xC.y2=3x D.y2=x12.已知對任意實數(shù),有,且時,則時A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點到點的距離比它到定直線的距離小1,則點滿足的方程為_____________14.已知圓,則圓心坐標為______.15.寫出一個數(shù)列的通項公式____________,使它同時滿足下列條件:①,②,其中是數(shù)列的前項和.(寫出滿足條件的一個答案即可)16.達?芬奇認為:和音樂一樣,數(shù)學和幾何“包含了宇宙的一切”,從年輕時起,他就本能地把這些主題運用在作品中,布達佩斯的伊帕姆維澤蒂博物館收藏的達?芬奇方磚,在正六邊形上畫了具有視覺效果的正方體圖案(如圖1),把三片這樣的達?芬奇方磚形成圖2的組合,這個組合表達了圖3所示的幾何體.若圖3中每個正方體的邊長為1,則點到直線的距離是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓經(jīng)過點和,且圓心在直線上(1)求圓的標準方程;(2)直線過點,且與圓相切,求直線的方程;(3)設直線與圓相交于兩點,點為圓上的一動點,求的面積的最大值18.(12分)某電腦公司為調(diào)查旗下A品牌電腦的使用情況,隨機抽取200名用戶,根據(jù)不同年齡段(單位:歲)統(tǒng)計如下表:分組頻率/組距0.010.040.070.060.02(1)根據(jù)上表,試估計樣本的中位數(shù)、平均數(shù)(同一組數(shù)據(jù)以該組區(qū)間的中點值為代表,結(jié)果精確到0.1);(2)按照年齡段從內(nèi)的用戶中進行分層抽樣,抽取6人,再從中隨機選取2人贈送小禮品,求恰有1人在內(nèi)的概率19.(12分)如圖1,在四邊形ABCD中,,,E是AD的中點,將沿BF折起至的位置,使得二面角的大小為120°(如圖2),M,N分別是,的中點.(1)證明:平面;(2)求平面與平面夾角的余弦值.20.(12分)已知是等差數(shù)列,其n前項和為,已知(1)求數(shù)列的通項公式:(2)設,求數(shù)列的前n項和21.(12分)已知函數(shù)(1)當時,求的單調(diào)遞減區(qū)間;(2)若關于的方程恰有兩個不等實根,求實數(shù)的取值范圍22.(10分)已知為數(shù)列的前項和,且(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和(3)設,若不等式對一切恒成立,求實數(shù)取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求導,得到曲線在點處的斜率,寫出切線方程.【詳解】因為,所以曲線在點處斜率為4,所以曲線在點處的切線方程是,即,故選:B2、D【解析】求導后,利用求得函數(shù)的單調(diào)遞減區(qū)間.【詳解】解:,則,由得,故選:D.3、C【解析】先求出,然后根據(jù)復數(shù)的模求解即可【詳解】,,則,故選:C4、A【解析】根據(jù)題意和對數(shù)的運算公式可證得為以2為首項,2為公比的等比數(shù)列,求出,進而得到,利用裂項相消法求得,再解不等式即可.【詳解】由,又,所以數(shù)列是以2為首項,2為公比的等比數(shù)列,故,則,所以,由,得,即,有,又,所以,即n的最小值為10.故選:A5、C【解析】先考慮充分性,再考慮必要性即得解.【詳解】解:如果為常數(shù)列,則成等差數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的充分條件;等差數(shù)列,所以,所以數(shù)列為,所以數(shù)列是常數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的必要條件.所以“為常數(shù)列”是“成等差數(shù)列”的充要條件.故選:C6、A【解析】將圓的方程配成標準方程,可求得圓心坐標.【詳解】圓的標準方程為,圓心的坐標為.故選:A.7、A【解析】根據(jù)雙曲線的漸近線方程知,,故選A.8、B【解析】根據(jù)等差數(shù)列的性質(zhì)和求和公式變形求解即可【詳解】因為等差數(shù)列,的前n項和分別是,所以,故選:B9、D【解析】根據(jù)題意轉(zhuǎn)化為對于且時,都有恒成立,構(gòu)造函數(shù),轉(zhuǎn)化為時,恒成立,求得的導數(shù),轉(zhuǎn)化為在上恒成立,即可求解.【詳解】由題意,對于且都有成立,不妨設,可得恒成立,即對于且時,都有恒成立,構(gòu)造函數(shù),可轉(zhuǎn)化為,函數(shù)為單調(diào)遞增函數(shù),所以當時,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即實數(shù)取值范圍為.故選:D10、B【解析】根據(jù)極限的定義計算【詳解】由題意故選:B11、C【解析】過點A,B分別作準線的垂線,交準線于點E,D,設|BF|=a,利用拋物線的定義和平行線的性質(zhì)、直角三角形求解【詳解】如圖,過點A,B分別作準線的垂線,交準線于點E,D,設|BF|=a,則由已知得|BC|=2a,由拋物線定義得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因為|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,從而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此拋物線的方程為y2=3x,故選:C.12、B【解析】,所以是奇函數(shù),關于原點對稱,是偶函數(shù),關于y軸對稱,時則都是增函數(shù),由對稱性可知時遞增,遞減,所以考點:函數(shù)奇偶性單調(diào)性二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)拋物線的定義可得動點的軌跡方程【詳解】點到點的距離比它到直線的距離少1,所以點到點的距離與到直線的距離相等,所以其軌跡為拋物線,焦點為,準線為,所以方程為,故答案為:14、【解析】將圓的一般方程配方程標準方程即可.【詳解】圓,即,它的圓心坐標是.故答案為:.15、(答案合理即可)【解析】當時滿足,利用作差比較法即可證明.【詳解】解:當時滿足條件①②,證明如下:因為,所以;當時,;當時,;綜上,.故答案為:(答案合理即可).16、【解析】根據(jù)題意,求得△的三條邊長,在三角形中求邊邊上的高線即可.【詳解】根據(jù)題意,延長交于點,連接,如下所示:在△中,容易知:;同理,,滿足,設點到直線的距離為,由等面積法可知:,解得,即點到直線的距離是.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或(3)【解析】(1)解法一,根據(jù)題意設圓的標準方程為,進而待定系數(shù)法求解即可;解法二:由題知圓心在線段的垂直平分線上,進而結(jié)合題意得圓的圓心與半徑,寫出方程;(2)分直線的斜率存在與不存在兩種情況討論求解即可;(3)由幾何法求弦長得,進而到直線距離的最大值為,再計算面積即可.【小問1詳解】解:解法一:設圓的標準方程為,由已知得,解得,所以圓的標準方程為;解法二:由圓經(jīng)過點和,可知圓心在線段的垂直平分線上,將代入,得,即,半徑,所以圓的標準方程為;【小問2詳解】解:當直線的斜率存在時,設,即,由直線與圓相切,得,解得,此時,當直線的斜率不存在時,直線顯然與圓相切所以直線的方程為或;【小問3詳解】解:圓心到直線的距離,所以,則點到直線距離的最大值為,所以的面積的最大值18、(1)中位數(shù)為38.6,平均數(shù)為38.5歲;(2).【解析】(1)由中位數(shù)分數(shù)據(jù)兩邊的頻率相等,列方程求中位數(shù);根據(jù)各組數(shù)據(jù)的中點數(shù)乘以頻率即可得平均數(shù);(2)由分層抽樣確定從中各抽4人、2人,列舉出隨機選取2人的所有組合,得到恰有1人在的組合數(shù),即可求概率.【詳解】(1)中位數(shù)在中,設為,則,解得.平均數(shù)為歲.所以樣本的中位數(shù)約為38.6,平均數(shù)為38.5歲.(2)根據(jù)分層抽樣法,其中位于中的有4人,記為,,,;位于中的有2人,記為,.從6人中抽取2人,有,,,,,,,,,,,,,,,共15種情況,恰有1人在內(nèi)的有,,,,,,,,共8種情況,∴恰有1人在內(nèi)的概率為.【點睛】關鍵點點睛:由中位數(shù)的性質(zhì)以及平均數(shù)與各組數(shù)據(jù)中點值、頻率的關系求中位數(shù)、平均數(shù);根據(jù)分層抽樣確定各組選取人數(shù),利用列舉法求概率.19、(1)證明見解析(2)【解析】(1)構(gòu)造中位線,利用面面平行,可以證明;(2)建立空間直角坐標系,用空間向量的方法即可.【小問1詳解】證明:如圖,取ED的中點P,連接MP,NP.在平行四邊形ABCD中,因為E是AD的中點,,所以,又,所以四邊形BCDE是平行四邊形;因為M,N分別是,BC的中點,所以,.又平面,平面,所以平面,平面.因為,所以平面平面.又平面,所以平面【小問2詳解】取BE的中點O,連接,CO,CE.在圖1中,因為,所以是等邊三角形,,又四邊形ABCD等腰梯形,所以,即是等邊三角形;所以如圖,,,所以.以為原點,射線OB為x軸的正半軸建立如圖所示的空間直角坐標系.因為,則,,,,則,設平面的法向量為,,得令,則,,即,由題可知,平面BCD的一個法向量為,.由圖可知,平面與平面BDC夾角余弦值為;20、(1);(2).【解析】(1)利用等差數(shù)列的基本量,結(jié)合已知條件,列出方程組,求得首項和公差,即可寫出通項公式;(2)根據(jù)(1)中所求,結(jié)合裂項求和法,即可求得.【小問1詳解】因為是等差數(shù)列,其n前項和為,已知,設其公差為,故可得:,,解得,又,故.【小問2詳解】由(1)知,,又,故.即.21、(1);(2)【解析】(1)求出導數(shù),令,得出變化情況表,即可得出單調(diào)區(qū)間;(2)分離參數(shù)得,構(gòu)造函數(shù),利用導數(shù)討論單調(diào)性,根據(jù)與恰有兩個不同交點即可得出.【詳解】(1)當時,函數(shù),則令,得,,當x變化時,的變化情況如下表:1+00+↗極大值↘極小值↗∴在上單調(diào)遞減(2)依題意,即.則令,則當時,,故單調(diào)遞增,且;當時,,故單調(diào)遞減,且∴函數(shù)在處取得最大值故要使與恰有兩個不同的交點,只需∴實數(shù)a的取值范圍是【點睛】關鍵點睛:本題考查根據(jù)方程根的個數(shù)求參數(shù),解題的關鍵是參數(shù)分離,構(gòu)造函數(shù)利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論