2023-2024學年安徽定遠示范高中高二數(shù)學第一學期期末綜合測試模擬試題含解析_第1頁
2023-2024學年安徽定遠示范高中高二數(shù)學第一學期期末綜合測試模擬試題含解析_第2頁
2023-2024學年安徽定遠示范高中高二數(shù)學第一學期期末綜合測試模擬試題含解析_第3頁
2023-2024學年安徽定遠示范高中高二數(shù)學第一學期期末綜合測試模擬試題含解析_第4頁
2023-2024學年安徽定遠示范高中高二數(shù)學第一學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年安徽定遠示范高中高二數(shù)學第一學期期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一條漸近線方程為,且與橢圓有公共焦點.則C的方程為()A. B.C. D.2.已知函數(shù)(且,)的一個極值點為2,則的最小值為()A. B.C. D.73.若點在橢圓的外部,則的取值范圍為()A. B.C. D.4.在中,若,,則外接圓半徑為()A. B.C. D.5.已知直線:和直線:,拋物線上一動點P到直線和直線的距離之和的最小值是()A. B.C. D.6.已知,為雙曲線:的焦點,為,(其中為雙曲線半焦距),與雙曲線的交點,且有,則該雙曲線的離心率為()A. B.C. D.7.若實數(shù)滿足,則點不可能落在()A.第一象限 B.第二象限C.第三象限 D.第四象限8.在中,a,b,c分別為角A,B,C的對邊,已知,,的面積為,則()A. B.C. D.9.若某群體中的成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.10.東漢末年的數(shù)學家趙爽在《周髀算經(jīng)》中利用一副“弦圖”,根據(jù)面積關系給出了勾股定理的證明,后人稱其為“趙爽弦圖”.如圖1,它由四個全等的直角三角形與一個小正方形拼成的一個大正方形.我們通過類比得到圖2,它是由三個全等的鈍角三角形與一個小等邊三角形拼成的一個大等邊三角形.對于圖2.下列結論正確的是()①這三個全等的鈍角三角形不可能是等腰三角形;②若,,則;③若,則;④若是的中點,則三角形的面積是三角形面積的7倍.A.①②④ B.①②③C.②③④ D.①③④11.某校去年有1100名同學參加高考,從中隨機抽取50名同學總成績進行分析,在這個調(diào)查中,下列敘述錯誤的是A.總體是:1100名同學的總成績 B.個體是:每一名同學C.樣本是:50名同學的總成績 D.樣本容量是:5012.雙曲線:(,)的左、右焦點分別為、,點在雙曲線上,,,則的離心率為()A. B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點處的切線方程為__________14.如圖,在等腰直角△ABC中,,點P是邊AB上異于A、B的一點,光線從點P出發(fā),經(jīng)BC、CA反射后又回到原點P.若光線QR經(jīng)過△ABC的內(nèi)心,則___________.15.若兩平行直線3x-2y-1=0,6x+ay+c=0之間的距離為,則的值為________16.關于曲線,給出下列三個結論:①曲線關于原點對稱,但不關于軸、軸對稱;②曲線恰好經(jīng)過4個整點(即橫、縱坐標均為整數(shù)的點);③曲線上任意一點到原點的距離都不大于.其中,正確結論的序號是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點,且離心率,為坐標原點.(1)求橢圓的方程;(2)判斷是否存在直線,使得直線與橢圓相交于兩點,直線與軸相交于點,且滿足,若存在,求出直線的方程;若不存在,請說明理由.18.(12分)已知橢圓過點,且離心率(1)求橢圓的方程;(2)設點為橢圓的左焦點,點,過點作的垂線交橢圓于點,,連接與交于點①若,求;②求的值19.(12分)雙曲線,離心率,虛軸長為2(1)求雙曲線的標準方程;(2)經(jīng)過點的直線與雙曲線相交于兩點,且為的中點,求直線的方程20.(12分)如圖,ABCD是邊長為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)證明:AC∥平面BEF;(2)求點C到平面BEF的距離21.(12分)如圖,在三棱錐中,,平面,,分別為棱,的中點.(1)求證:;(2)若,,二面角的大小為,求三棱錐的體積.22.(10分)某校高二年級全體學生參加了一次數(shù)學測試,學校利用簡單隨機抽樣方法從甲班、乙班各抽取五名同學的數(shù)學測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學中隨機抽出兩名,求此兩人都來自甲班的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)已知和漸近線方程可得,雙曲線焦距,結合的關系,即可求出結論.【詳解】因為雙曲線的一條漸近線方程為,則①.又因為橢圓與雙曲線有公共焦點,雙曲線的焦距,即c=3,則a2+b2=c2=9②.由①②解得a=2,b=,則雙曲線C的方程為.故選:B.2、B【解析】求出函數(shù)的導數(shù),由給定極值點可得a與b的關系,再借助“1”的妙用求解即得.【詳解】對求導得:,因函數(shù)的一個極值點為2,則,此時,,,因,即,因此,在2左右兩側鄰近的區(qū)域值一正一負,2是函數(shù)的一個極值點,則有,又,,于是得,當且僅當,即時取“=”,所以的最小值為.故選:B3、B【解析】根據(jù)題中條件,得到,求解,即可得出結果.【詳解】因為點在橢圓的外部,所以,即,解得或.故選:B.4、A【解析】根據(jù)三角形面積公式求出c,再由余弦定理求出a,根據(jù)正弦定理即可求外接圓半徑.【詳解】,,,解得由正弦定理可得:,所以故選:A5、A【解析】根據(jù)已知條件,結合拋物線的定義,可得點P到直線和直線的距離之和,當B,P,F(xiàn)三點共線時,最小,再結合點到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準線為,焦點為,∴點P到準線的距離PA等于點P到焦點F的距離PF,即,∴點P到直線和直線的距離之和,∴當B,P,F(xiàn)三點共線時,最小,∵,∴,∴點P到直線和直線的距離之和的最小值為故選:A6、B【解析】根據(jù)求得的關系,結合雙曲線的定義以及勾股定理,即可求得的等量關系,再求離心率即可.【詳解】根據(jù)題意,連接,作圖如下:顯然為直角三角形,又,又點在雙曲線上,故可得,解得,由勾股定理可得:,即,即,,故雙曲線的離心率為.故選:B.7、B【解析】作出給定的不等式組表示的平面區(qū)域,觀察圖形即可得解.【詳解】因實數(shù)滿足,作出不等式組表示的平面區(qū)域,如圖中陰影部分,觀察圖形知,陰影區(qū)域不過第二象限,即點不可能落在第二象限.故選:B8、C【解析】利用面積公式,求出,進而求出,利用余弦定理求出,再利用正弦定理求出【詳解】由面積公式得:,因為的面積為,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故選:C9、A【解析】利用對立事件概率公式可求得所求事件的概率.【詳解】由對立事件的概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.10、A【解析】對于①,由三角形大邊對大角的性質分析,對于②,根據(jù)題意利用正弦定理分析,對于③,利用余弦定理分析,對于④,利用三角形的面積公式分析判斷【詳解】對于①,根據(jù)題意,圖2,它是由三個全等的鈍角三角形與一個小等邊三角形拼成的一個大等邊三角形,故,,所以這三個全等的鈍角三角形不可能是等腰三角形,故①正確;對于②,由題知,在中,,,,所以,所以由正弦定理得解得,因為,所以,故②正確;對于③,不妨設,所以在中,由余弦定理得,代入數(shù)據(jù)得,所以,所以,故③錯誤;對于④,若是的中點,則,所以,故④正確.故選:A第II卷(非選擇題11、B【解析】采用逐一驗證法,根據(jù)總體,個體,樣本的概念,可得結果.【詳解】據(jù)題意:總體是1100名同學的總成績,故A正確個體是每名同學的總成績,故B錯樣本是50名同學的總成績,故C正確樣本容量是:50,故D正確故選:B【點睛】本題考查總體,個體,樣本的概念,屬基礎題.12、C【解析】根據(jù)雙曲線定義、余弦定理,結合題意,求得關系,即可求得離心率.【詳解】根據(jù)題意,作圖如下:不妨設,則,,①;在△中,由余弦定理可得:,代值得:,②;聯(lián)立①②兩式可得:;在△和△中,由,可得:,整理得:,③;聯(lián)立②③可得:,又,故可得:,則,則,故離心率為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先驗證點在曲線上,再求導,代入切線方程公式即可【詳解】由題,當時,,故點在曲線上求導得:,所以故切線方程為故答案為:14、【解析】以為坐標原點建立空間直角坐標系,設出點的坐標,求得△的內(nèi)心坐標,根據(jù)△內(nèi)心以及關于的對稱點三點共線,即可求得點的坐標,則問題得解.【詳解】根據(jù)題意,以為坐標原點,建立平面直角坐標系,設點關于直線的對稱點為,關于軸的對稱點為,如下所示:則,不妨設,則直線的方程為,設點坐標為,則,且,整理得,解得,即點,又;設△的內(nèi)切圓圓心為,則由等面積法可得,解得;故其內(nèi)心坐標為,由及△的內(nèi)心三點共線,即,整理得,解得(舍)或,故.故答案為:.15、±1【解析】由題意得=≠,∴a=-4且c≠-2,則6x+ay+c=0可化為3x-2y+=0,由兩平行線間的距離公式,得=,解得c=2或c=-6,∴=±116、①③【解析】設為曲線上任意一點,判斷、、是否滿足曲線方程即可判斷①;求出曲線過的整點即可判斷②;由條件利用即可得,即可判斷③;即可得解.【詳解】設為曲線上任意一點,則,設點關于原點、軸、軸的對稱點分別為、、,因為;;;所以點在曲線上,點、點不在曲線上,所以曲線關于原點對稱,但不關于軸、軸對稱,故①正確;當時,;當,.此外,當時,;當時,.故曲線過整點,,,,,,故②錯誤;又,所以恒成立,由可得,當且僅當時等號成立,所以,所以曲線上任一點到原點的距離,故③正確.故答案為:①③.【點睛】本題考查了與曲線方程有關的命題真假判斷,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,方程為和.【解析】(1)根據(jù)橢圓上的點、離心率和關系可構造方程求得,由此可得橢圓方程;(2)設,與橢圓方程聯(lián)立可得韋達定理形式,根據(jù)共線向量可得,代入韋達定理中可構造關于的方程,解方程可求得,進而得到直線方程.【小問1詳解】由題意得:,解得:,橢圓的方程為;【小問2詳解】由題意知:直線斜率存在且不為零,可設,,,由得:,則;,,,,,解得:,,滿足條件的直線存在,方程為和.18、(1)(2)①,②【解析】(1)由題意得解方程組求出,從而可得橢圓的方程,(2)①由題意可得的方程為,再與橢圓方程聯(lián)立,解方程組求出的坐標,從而可求出;②當時,,當時,直線方程為,與橢圓方程聯(lián)立,消去,利用根與系數(shù)的關系,結合中點坐標公式可得中點的坐標,再將直線的方程與方程聯(lián)立,求出點的坐標,從而可求出的值【小問1詳解】由題意得解得,所以橢圓的方程為.【小問2詳解】①當時,直線的斜率,則的垂線的方程為由得解得故,,②由,,顯然斜率存在,,當時,當時,直線過點且與直線垂直,則直線方程為由得顯然設,,則,則中點直線的方程為,由得所以綜上的值為19、(1)(2)【解析】(1)根據(jù)題意求出即可得出;(2)利用點差法求出直線斜率即可得出方程.【小問1詳解】∵,,∴,,∵,∴,∴,∴雙曲線的標準方程為;【小問2詳解】設以定點為中點的弦的端點坐標為,可得,,由在雙曲線上,可得:,兩式相減可得以定點為中點的弦所在的直線斜率為:則以定點為中點的弦所在的直線方程為,即為,聯(lián)立方程得:,,符合,∴直線的方程為:.20、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,進而求出平面BEF的法向量,然后證明線面平行;(2)算出在向量方向上的投影,進而求得答案.【小問1詳解】因為DE⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因為ABCD是正方形,所以DA⊥DC.以D為坐標原點,所在方向分別為軸的正方向建立空間直角坐標系,則A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(xiàn)(2,0,1),所以,,設平面BEF的法向量,因為,所以-2x-2y+2z=0,-2y+z=0,令y=1,則=(1,1,2),又因為=(-2,2,0),所以,即,而平面BEF,所以AC∥平面BEF.【小問2詳解】設點C到平面BEF的距離為d,而,所以,所以點C到平面BEF的距離為21、(1)證明見解析;(2).【解析】(1)利用線面垂直的判定定理及性質即證;(2)利用坐標法,結合條件可求,然后利用體積公式即求.【小問1詳解】,是的中點,,平面,平面,,又,平面,平面,;【小問2詳解】,,,取的中點,連接,則,平面,以為坐標原點,分別以、、所在直線為、、軸建立空間直角坐標系,設,則,,,,,,,,設平面的一個法向量為,由,取,得;設平面的一個法向量為,由,取,得,∵二面角的大小為,,解得,,則三棱錐的體積.22、(1),(2)【解析】(1)根據(jù)莖葉圖得甲班中位數(shù)為,由此能求出,根據(jù)由,且,能求出.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論