版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年安徽省濉溪縣數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是橢圓與雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且,線段的垂直平分線過,若橢圓的離心率為,雙曲線的離心率為,則的最小值為()A. B.3C.6 D.2.已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)A是橢圓短軸的一個(gè)頂點(diǎn),且,則橢圓的離心率()A. B.C. D.3.在棱長均為1的平行六面體中,,則()A. B.3C. D.64.在平面直角坐標(biāo)系中,雙曲線的右焦點(diǎn)為,過雙曲線上一點(diǎn)作軸的垂線足為,若,則該雙曲線的離心率為()A. B.C. D.5.已知集合,,則()A. B.C. D.6.命題“,則”及其逆命題、否命題和逆否命題這四個(gè)命題中,真命題的個(gè)數(shù)為()A.0 B.2C.3 D.47.設(shè)集合,則AB=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}8.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個(gè)高階等差數(shù)列,其前6項(xiàng)分別為1,5,11,21,37,61,則該數(shù)列的第7項(xiàng)為()A.95 B.131C.139 D.1419.曲線在處的切線如圖所示,則()A. B.C. D.10.設(shè)是雙曲線與圓在第一象限的交點(diǎn),,分別是雙曲線的左,右焦點(diǎn),若,則雙曲線的離心率為()A. B.C. D.11.在某次賽車中,名參賽選手的成績(單位:)全部介于到之間(包括和),將比賽成績分為五組:第一組,第二組,···,第五組,其頻率分布直方圖如圖所示.若成績在內(nèi)的選手可獲獎(jiǎng),則這名選手中獲獎(jiǎng)的人數(shù)為A. B.C. D.12.下列命題中,一定正確的是()A.若且,則a>0,b<0B.若a>b,b≠0,則>1C.若a>b且a+c>b+d,則c>dD.若a>b且ac>bd,則c>d二、填空題:本題共4小題,每小題5分,共20分。13.已知平面的法向量為,平面的法向量為,若,則實(shí)數(shù)______14.已知△ABC的周長為20,且頂點(diǎn),則頂點(diǎn)A的軌跡方程是______15.已知雙曲線:的右焦點(diǎn)為,過點(diǎn)向雙曲線的一條漸近線引垂線,垂足為,交另一條漸近線于,若,則雙曲線的漸近線方程為__________16.已知等比數(shù)列的前項(xiàng)和為,若,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,有一條長度為3的線段,端點(diǎn),分別在軸、軸上運(yùn)動(dòng),為線段上一點(diǎn),且.(1)求點(diǎn)的軌跡的方程;(2)已知不過原點(diǎn)的直線與相交于,兩點(diǎn),且線段始終被直線平分.求的面積取最大時(shí)直線的方程.18.(12分)給出以下三個(gè)條件:①;②,,成等比數(shù)列;③.請(qǐng)從這三個(gè)條件中任選一個(gè),補(bǔ)充到下面問題中,并完成作答.若選擇多個(gè)條件分別作答,以第一個(gè)作答計(jì)分已知公差不為0的等差數(shù)列的前n項(xiàng)和為,,______(1)求數(shù)列的通項(xiàng)公式;(2)若,令,求數(shù)列的前n項(xiàng)和19.(12分)如圖,在四棱錐中,側(cè)面底面,是以為斜邊的等腰直角三角形,,,,點(diǎn)E為的中點(diǎn).(1)證明:平面;(2)求二面角的余弦值.20.(12分)如圖,△ABC中,,,在三角形內(nèi)挖去一個(gè)半圓(圓心O在邊BC上,半圓與AC、AB分別相切于點(diǎn)C,M,與BC交于點(diǎn)N),將△ABC繞直線BC旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體(1)求該幾何體中間一個(gè)空心球表面積的大小;(2)求圖中陰影部分繞直線BC旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積21.(12分)已知函數(shù)在區(qū)間上有最大值和最小值(1)求實(shí)數(shù)、的值;(2)設(shè),若不等式,在上恒成立,求實(shí)數(shù)的取值范圍22.(10分)已知直線l經(jīng)過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0交點(diǎn),且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標(biāo)準(zhǔn)方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用橢圓和雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示,再利用均值不等式得到答案【詳解】設(shè)橢圓長軸,雙曲線實(shí)軸,由題意可知:,又,,兩式相減,可得:,,.,,當(dāng)且僅當(dāng)時(shí)取等號(hào),的最小值為6,故選:C【點(diǎn)睛】本題考查了橢圓雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示是解題的關(guān)鍵,意在考查學(xué)生的計(jì)算能力2、D【解析】依題意,不妨設(shè)點(diǎn)A的坐標(biāo)為,在中,由余弦定理得,再根據(jù)離心率公式計(jì)算即可.【詳解】設(shè)橢圓的焦距為,則橢圓的左焦點(diǎn)的坐標(biāo)為,右焦點(diǎn)的坐標(biāo)為,依題意,不妨設(shè)點(diǎn)A的坐標(biāo)為,在中,由余弦定理得:,,,,解得.故選:D.【點(diǎn)睛】本題考查橢圓幾何性質(zhì),在中,利用余弦定理求得是關(guān)鍵,屬于中檔題.3、C【解析】設(shè),,,利用結(jié)合數(shù)量積的運(yùn)算即可得到答案.【詳解】設(shè),,,由已知,得,,,,所以,所以.故選:C4、A【解析】根據(jù)條件可知四邊形為正方形,從而根據(jù)邊長相等,列式求雙曲線的離心率.【詳解】不妨設(shè)在第一象限,則,根據(jù)題意,四邊形為正方形,于是,即,化簡得,解得(負(fù)值舍去).故選:A.5、A【解析】由已知得,因?yàn)椋?,故選A6、D【解析】首先判斷原命題的真假,寫出其逆命題,即可判斷其真假,再根據(jù)互為逆否命題的兩個(gè)命題同真假,即可判斷;【詳解】解:因?yàn)槊}“,則”為真命題,所以其逆否命題也為真命題;其逆命題為:則,顯然也為真命題,故其否命題也為真命題;故命題“,則”及其逆命題、否命題和逆否命題這四個(gè)命題中,真命題有4個(gè);故選:D7、B【解析】按交集定義求解即可.【詳解】AB={2,3}故選:B8、A【解析】利用已知條件,推出數(shù)列的差數(shù)的差組成的數(shù)列是等差數(shù)列,轉(zhuǎn)化求解即可【詳解】由題意可知,1,5,11,21,37,61,……,的差的數(shù)列為4,6,10,16,24,……,則這個(gè)數(shù)列的差組成的數(shù)列為:2,4,6,8,……,是一個(gè)等差數(shù)列,設(shè)原數(shù)列的第7項(xiàng)為,則,解得,所以原數(shù)列的第7項(xiàng)為95,故選:A9、C【解析】由圖可知切線斜率為,∴.故選:C.10、B【解析】先由雙曲線定義與題中條件得到,,求出,,再由題意得到,即可根據(jù)勾股定理求出結(jié)果.【詳解】解:根據(jù)雙曲線定義:,,∴,∴,,,∴是圓的直徑,∴,中,,得故選【點(diǎn)睛】本題主要考查求雙曲線的離心率,熟記雙曲線的簡單性質(zhì)即可,屬于常考題型.11、A【解析】先根據(jù)頻率分布直方圖確定成績在內(nèi)的頻率,進(jìn)而可求出結(jié)果.【詳解】由題意可得:成績在內(nèi)的頻率為,又本次賽車中,共名參賽選手,所以,這名選手中獲獎(jiǎng)的人數(shù)為.故選A【點(diǎn)睛】本題主要考查頻率分布直方圖,會(huì)根據(jù)頻率分布直方圖求頻率即可,屬于常考題型.12、A【解析】結(jié)合不等式的性質(zhì)確定正確答案.【詳解】A選項(xiàng),若且,則,所以A選項(xiàng)正確.B選項(xiàng),若,則,所以B選項(xiàng)錯(cuò)誤.C選項(xiàng),如,但,所以C選項(xiàng)錯(cuò)誤.D選項(xiàng),如,但,所以D選項(xiàng)錯(cuò)誤.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題設(shè)可得,結(jié)合向量共線的坐標(biāo)表示求參數(shù)即可.【詳解】由題設(shè),平面與平面的法向量共線,∴,則,即,解得.故答案為:.14、.【解析】由周長確定,故軌跡是橢圓,注意焦點(diǎn)位置和摳除不符合條件的點(diǎn)即可.【詳解】解:,所以,,則頂點(diǎn)A的軌跡方程是.故答案為:.【點(diǎn)睛】考查橢圓定義的應(yīng)用,基礎(chǔ)題.15、【解析】由題意得雙曲線的右焦點(diǎn)F(c,0),設(shè)一漸近線OM的方程為,則另一漸近線ON的方程為.設(shè),∵,∴,∴,解得∴點(diǎn)M的坐標(biāo)為,又,∴,整理得,∴雙曲線的漸近線方程為答案:點(diǎn)睛:(1)已知雙曲線的標(biāo)準(zhǔn)方程求雙曲線的漸近線方程時(shí),只要令雙曲線的標(biāo)準(zhǔn)方程中“1”為“0”就得到兩漸近線方程,即方程就是雙曲線的兩條漸近線方程(2)求雙曲線的漸進(jìn)線方程的關(guān)鍵是求出的關(guān)系,并根據(jù)焦點(diǎn)的位置確定出漸近線的形式,并進(jìn)一步得到其方程16、【解析】設(shè)等比數(shù)列的公比為,根據(jù)已知條件求出的值,由此可得出的值.【詳解】設(shè)等比數(shù)列的公比為,則,整理可得,,解得,因此,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè),根據(jù)題意可得,,利用兩點(diǎn)之間的距離公式表示出,化簡即可得出結(jié)果;(2)設(shè),,線段的中點(diǎn)為,利用兩點(diǎn)坐標(biāo)表示直線斜率的公式和點(diǎn)差法求出直線的斜率,設(shè)的方程為,聯(lián)立橢圓方程并消去y得到關(guān)于x的一元二次方程,根據(jù)韋達(dá)定理表示、進(jìn)而得出弦長,利用點(diǎn)到直線的距離公式求出原點(diǎn)到的距離,結(jié)合基本不等式計(jì)算即可.【小問1詳解】設(shè),由為線段上一點(diǎn),且,得,,又,則,整理可得,所以軌跡的方程為;【小問2詳解】設(shè),,線段的中點(diǎn)為.∵在直線上,∴,∵A,在軌跡上,∴兩式相減,可得,∴,即直線的斜率為,依題意,可設(shè)直線的方程為,由可得,則解得且由韋達(dá)定理,得,∴∵原點(diǎn)到直線的距離為∴,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,即時(shí),三角形的面積最大,此時(shí)直線的方程為.18、(1)(2)【解析】(1)若選①,則根據(jù)等差數(shù)列的前n項(xiàng)和公式,結(jié)合,求得公差,可得答案;若選②,則根據(jù),,成等比數(shù)列,列出方程,結(jié)合,求得公差,可得答案;若選③,則根據(jù),列出方程,結(jié)合,求得公差,可得答案;(2)由(1)可得的表達(dá)式,利用錯(cuò)位相減法,求得答案.【小問1詳解】設(shè)數(shù)列的公差為d選擇①,由題意得,又,則,所以;選擇②,由,,成等比數(shù)列,得,即,解得,或(舍去),所以;選擇③,由,得,解得,所以【小問2詳解】由題意知,∴①②①-②得∴,即.19、(1)見解析;(2)【解析】(1)用線線平行證明線面平行,∴在平面PCD內(nèi)作BE的平行線即可;(2)求二面角的大小,可以用空間向量進(jìn)行求解,根據(jù)已知條件,以AD中點(diǎn)O為原點(diǎn),OB,AD,OP分別為x、y、z軸建立坐標(biāo)系﹒【小問1詳解】如圖,取PD中點(diǎn)F,連接EF,F(xiàn)C﹒∵E是AP中點(diǎn),∴EFAD,由題知BCAD,∴BCEF,∴BCFE是平行四邊形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小問2詳解】取AD中點(diǎn)O,連接OP,OB,∵是以為斜邊等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥AD,AD=2BC知OB⊥OD,∴OP、OB、OD兩兩垂直,故以O(shè)原點(diǎn),OB、OD、OP分別為x、y、z軸,建立空間直角坐標(biāo)系Oxyz,如圖:設(shè)|BC|=1,則B(1,0,0),D(0,1,0),E(0,),P(0,0,1),則,設(shè)平面BED的法向量為,平面PBD的法向量為則,取,,取設(shè)二面角的大小為θ,則cosθ=﹒20、(1);(2).【解析】根據(jù)旋轉(zhuǎn)體的軸截面圖,根據(jù)已知條件求球的半徑與長,再利用球體、圓錐的面積、體積公式計(jì)算即可.【小問1詳解】連接,則,設(shè),在中,,;【小問2詳解】,∴圓錐球.21、(1),;(2).【解析】(1)分析函數(shù)在區(qū)間上的單調(diào)性,結(jié)合已知條件可得出關(guān)于實(shí)數(shù)、的方程組,即可解得實(shí)數(shù)、的值;(2)由(1)可得,利用參變量分離法可得出,利用單調(diào)性求出函數(shù)在上的最小值,即可得出實(shí)數(shù)的取值范圍.【小問1詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州大學(xué)《電電子基礎(chǔ)訓(xùn)練》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州財(cái)經(jīng)大學(xué)《人文地理學(xué)基本問題》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年陜西省建筑安全員考試題庫
- 貴陽信息科技學(xué)院《管理學(xué)精要》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州珠江職業(yè)技術(shù)學(xué)院《組合與運(yùn)籌》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025海南省建筑安全員B證考試題庫及答案
- 2025福建省安全員考試題庫附答案
- 廣州幼兒師范高等??茖W(xué)?!陡呒?jí)聽說》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州新華學(xué)院《量子力學(xué)(Ⅱ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州衛(wèi)生職業(yè)技術(shù)學(xué)院《曲式與作品分析Ⅰ》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年中國陶瓷碗盆市場調(diào)查研究報(bào)告
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之22:“8運(yùn)行-8.1運(yùn)行策劃和控制”(雷澤佳編制-2025B0)
- 單位網(wǎng)絡(luò)安全攻防演練
- 神經(jīng)外科基礎(chǔ)護(hù)理課件
- 2024中國儲(chǔ)備糧管理集團(tuán)限公司招聘700人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 內(nèi)蒙古赤峰市2023-2024學(xué)年高一上學(xué)期期末考試物理試題(含答案)
- 建筑工程機(jī)械設(shè)備安全技術(shù)操作規(guī)程
- 2024年中國心力衰竭診斷和治療指南2024版
- HCCDP 云遷移認(rèn)證理論題庫
- 臺(tái)大公開課--《紅樓夢》筆記剖析
- 底總結(jié)報(bào)告2017年初開場計(jì)劃策劃模版圖文可隨意編輯修改課件
評(píng)論
0/150
提交評(píng)論