![天津市第七中學(xué)2022-2023學(xué)年高三高考適應(yīng)性模擬押題測試(一)數(shù)學(xué)試題_第1頁](http://file4.renrendoc.com/view/060979d09bda02040fb73b7feebe4618/060979d09bda02040fb73b7feebe46181.gif)
![天津市第七中學(xué)2022-2023學(xué)年高三高考適應(yīng)性模擬押題測試(一)數(shù)學(xué)試題_第2頁](http://file4.renrendoc.com/view/060979d09bda02040fb73b7feebe4618/060979d09bda02040fb73b7feebe46182.gif)
![天津市第七中學(xué)2022-2023學(xué)年高三高考適應(yīng)性模擬押題測試(一)數(shù)學(xué)試題_第3頁](http://file4.renrendoc.com/view/060979d09bda02040fb73b7feebe4618/060979d09bda02040fb73b7feebe46183.gif)
![天津市第七中學(xué)2022-2023學(xué)年高三高考適應(yīng)性模擬押題測試(一)數(shù)學(xué)試題_第4頁](http://file4.renrendoc.com/view/060979d09bda02040fb73b7feebe4618/060979d09bda02040fb73b7feebe46184.gif)
![天津市第七中學(xué)2022-2023學(xué)年高三高考適應(yīng)性模擬押題測試(一)數(shù)學(xué)試題_第5頁](http://file4.renrendoc.com/view/060979d09bda02040fb73b7feebe4618/060979d09bda02040fb73b7feebe46185.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
天津市第七中學(xué)2022-2023學(xué)年高三高考適應(yīng)性模擬押題測試(一)數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在上的大致圖象是()A. B.C. D.2.2020年是脫貧攻堅決戰(zhàn)決勝之年,某市為早日實現(xiàn)目標(biāo),現(xiàn)將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種3.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數(shù)為()A.1 B.2 C.3 D.44.已知函數(shù).若存在實數(shù),且,使得,則實數(shù)a的取值范圍為()A. B. C. D.5.已知函數(shù),則函數(shù)的圖象大致為()A. B.C. D.6.集合,,則=()A. B.C. D.7.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.8.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.39.如圖,拋物線:的焦點為,過點的直線與拋物線交于,兩點,若直線與以為圓心,線段(為坐標(biāo)原點)長為半徑的圓交于,兩點,則關(guān)于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定10.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.1911.各項都是正數(shù)的等比數(shù)列的公比,且成等差數(shù)列,則的值為()A. B.C. D.或12.已知函數(shù)(),若函數(shù)在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或0二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域為______.14.已知點是雙曲線漸近線上的一點,則雙曲線的離心率為_______15.如圖所示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點的四面體的外接球的體積為________.16.設(shè)全集,集合,,則集合______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,,,且滿足(1)求點的軌跡的方程;(2)過,作直線交軌跡于,兩點,若的面積是面積的2倍,求直線的方程.18.(12分)已知函數(shù)(1)求單調(diào)區(qū)間和極值;(2)若存在實數(shù),使得,求證:19.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點,且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.20.(12分)已知橢圓E:()的離心率為,且短軸的一個端點B與兩焦點A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點P為橢圓E上的一點,過點P作橢圓E的切線交圓O:于不同的兩點M,N(其中M在N的右側(cè)),求四邊形面積的最大值.21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程及直線的直角坐標(biāo)方程;(2)求曲線上的點到直線的距離的最大值與最小值.22.(10分)已知都是各項不為零的數(shù)列,且滿足其中是數(shù)列的前項和,是公差為的等差數(shù)列.(1)若數(shù)列是常數(shù)列,,,求數(shù)列的通項公式;(2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;(3)若(為常數(shù),),.求證:對任意的恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
討論的取值范圍,然后對函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可判斷.【詳解】當(dāng)時,,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當(dāng)時,,故切線的斜率變小,當(dāng)時,,故切線的斜率變大,可排除A、B;當(dāng)時,,則,所以函數(shù)在上單調(diào)遞增,令,,當(dāng)時,,故切線的斜率變大,當(dāng)時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系以及導(dǎo)數(shù)的幾何意義,屬于中檔題.2、B【解析】
分成甲單獨到縣和甲與另一人一同到縣兩種情況進(jìn)行分類討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點睛】本小題主要考查簡答排列組合的計算,屬于基礎(chǔ)題.3、A【解析】
先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復(fù)合命題的真假,可得出選項.【詳解】已知對于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當(dāng)時,,當(dāng)即時,取等號,當(dāng)時,函數(shù)沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數(shù)為1個.故選:A.【點睛】本題考查直線的垂直的判定和基本不等式的應(yīng)用,以及復(fù)合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎(chǔ)題.4、D【解析】
首先對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的符號分析函數(shù)的單調(diào)性和函數(shù)的極值,根據(jù)題意,列出參數(shù)所滿足的不等關(guān)系,求得結(jié)果.【詳解】,令,得,.其單調(diào)性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點睛】該題考查的是有關(guān)根據(jù)函數(shù)值的關(guān)系求參數(shù)的取值范圍的問題,涉及到的知識點有利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,畫出圖象數(shù)形結(jié)合,屬于較難題目.5、A【解析】
用排除法,通過函數(shù)圖像的性質(zhì)逐個選項進(jìn)行判斷,找出不符合函數(shù)解析式的圖像,最后剩下即為此函數(shù)的圖像.【詳解】設(shè),由于,排除B選項;由于,所以,排除C選項;由于當(dāng)時,,排除D選項.故A選項正確.故選:A【點睛】本題考查了函數(shù)圖像的性質(zhì),屬于中檔題.6、C【解析】
先化簡集合A,B,結(jié)合并集計算方法,求解,即可.【詳解】解得集合,所以,故選C.【點睛】本道題考查了集合的運算,考查了一元二次不等式解法,關(guān)鍵化簡集合A,B,難度較?。?、C【解析】
根據(jù)題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.8、A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運算能力,是一道容易題.9、A【解析】
利用的坐標(biāo)為,設(shè)直線的方程為,然后聯(lián)立方程得,最后利用韋達(dá)定理求解即可【詳解】據(jù)題意,得點的坐標(biāo)為.設(shè)直線的方程為,點,的坐標(biāo)分別為,.討論:當(dāng)時,;當(dāng)時,據(jù),得,所以,所以.【點睛】本題考查直線與拋物線的相交問題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎(chǔ)題10、B【解析】
計算,故,解得答案.【詳解】當(dāng)時,,即,且.故,,故.故選:.【點睛】本題考查了數(shù)列的相關(guān)計算,意在考查學(xué)生的計算能力和對于數(shù)列公式方法的綜合應(yīng)用.11、C【解析】分析:解決該題的關(guān)鍵是求得等比數(shù)列的公比,利用題中所給的條件,建立項之間的關(guān)系,從而得到公比所滿足的等量關(guān)系式,解方程即可得結(jié)果.詳解:根據(jù)題意有,即,因為數(shù)列各項都是正數(shù),所以,而,故選C.點睛:該題應(yīng)用題的條件可以求得等比數(shù)列的公比,而待求量就是,代入即可得結(jié)果.12、C【解析】
求出函數(shù)的導(dǎo)函數(shù),當(dāng)時,只需,即,令,利用導(dǎo)數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當(dāng)時,根據(jù)函數(shù)的單調(diào)性及零點存在性定理可判斷;【詳解】解:∵(),∴,∴當(dāng)時,由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調(diào)遞增.∵,∴;當(dāng)時,,函數(shù)在上單調(diào)遞減,∵,,函數(shù)在上有且只有一個零點,∴的值是1或0.故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點問題,零點存在性定理的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對數(shù)函數(shù)的定義域需滿足真數(shù)大于0,再由指數(shù)型不等式求解出解集即可.【詳解】對函數(shù)有意義,即.故答案為:【點睛】本題考查求對數(shù)函數(shù)的定義域,還考查了指數(shù)型不等式求解,屬于基礎(chǔ)題.14、【解析】
先表示出漸近線,再代入點,求出,則離心率易求.【詳解】解:的漸近線是因為在漸近線上,所以,故答案為:【點睛】考查雙曲線的離心率的求法,是基礎(chǔ)題.15、【解析】
將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.【點睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時,要考慮是否能將其置入正(長)方體中,是一道中檔題.16、【解析】
分別解得集合A與集合B的補集,再由集合交集的運算法則計算求得答案.【詳解】由題可知,集合A中集合B的補集,則故答案為:【點睛】本題考查集合的交集與補集運算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)的方程為.【解析】
(1)令,則,由此能求出點C的軌跡方程.(2)令,令直線,聯(lián)立,得,由此利用根的判別式,韋達(dá)定理,三角形面積公式,結(jié)合已知條件能求出直線的方程?!驹斀狻拷猓海?)因為,即直線的斜率分別為且,設(shè)點,則,整理得.(2)令,易知直線不與軸重合,令直線,與聯(lián)立得,所以有,由,故,即,從而,解得,即。所以直線的方程為?!军c睛】本題考查橢圓方程、直線方程的求法,考查橢圓方程、橢圓與直線的位置關(guān)系,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題。18、(1)時,函數(shù)單調(diào)遞增,,函數(shù)單調(diào)遞減,;(2)見解析【解析】
(1)求出函數(shù)的定義域與導(dǎo)函數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,即可得到函數(shù)的極值;(2)易得且,要證明,即證,即證,即對恒成立,構(gòu)造函數(shù),,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,即可得證;【詳解】解:(1)因為定義域為,所以,時,,即在和上單調(diào)遞增,當(dāng)時,,即函數(shù)在單調(diào)遞減,所以在處取得極小值,在處取得極大值;,;(2)易得,要證明,即證,即證即證對恒成立,令,,則令,解得,即在上單調(diào)遞增;令,解得,即在上單調(diào)遞減;則在取得極小值,也就是最小值,從而結(jié)論得證.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,利用導(dǎo)數(shù)證明不等式,考查運算求解能力,考查函數(shù)與方程思想,屬于中檔題.19、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).【解析】
(I)取的中點,連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點,易得面,利用棱錐的體積公式,計算出棱錐的體積.【詳解】(Ⅰ)取的中點,連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點,所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點,即面,.【點睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.20、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)結(jié)合已知可得,求出a,b的值,即可得橢圓方程;(Ⅱ)由題意可知,直線的斜率存在,設(shè)出直線方程,聯(lián)立直線方程與橢圓方程,利用判別式等于0可得,聯(lián)立直線方程與圓的方程,結(jié)合根與系數(shù)的關(guān)系求得,利用弦長公式及點到直線的距離公式,求出,得到,整理后利用基本不等式求最值.【詳解】解:(Ⅰ)可得,結(jié)合,解得,,,得橢圓方程;(Ⅱ)易知直線的斜率k存在,設(shè):,由,得,由,得,∵,設(shè)點O到直線:的距離為d,,,由,得,,,∴∴,∴而,,易知,∴,則,四邊形的面積當(dāng)且僅當(dāng),即時取“”.∴四邊形面積的最大值為4.【點睛】本題考查了由求橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,考查了學(xué)生的計算能力,綜合性比較強,屬于難題.21、(1),(2)最大值,最小值【解析】
(1)由曲線的參數(shù)方程,得兩式平方相加求解,根據(jù)直線的極坐標(biāo)方程,展開有,再根據(jù)求解.(2)因為曲線C是一個半圓,利用數(shù)形結(jié)合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.【詳解】(1)因為曲線的參數(shù)方程為所以兩式平方相加得:因為直線的極坐標(biāo)方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點到直線的最小值為:則點M(2,0)到直線的距離為最大值:【點睛】本題主要考查參數(shù)方程,普通方程及極坐標(biāo)方程的轉(zhuǎn)化和直線與圓的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.22、(1);(2)詳見解析;(3)詳見解析.【解析】
(1)根據(jù),可求得,再根據(jù)是常數(shù)列代入根據(jù)通項與前項和的關(guān)系求解即可.(2)取,并結(jié)合通項與前項和的關(guān)系可求得再根據(jù)化簡可得,代入化簡即可知,再證明也成立即可.(3)由(2)當(dāng)時,,代入所給的條件化簡可得,進(jìn)而證明可得,即數(shù)列是等比數(shù)列.繼而求得,再根據(jù)作商法證明即可.【詳解】解:.是各項不為零的常數(shù)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年鼠抗病毒抗原單克隆抗體項目提案報告模板
- 2025年雙邊貿(mào)易合作策劃購銷協(xié)議書
- 2025年企業(yè)搬遷安置協(xié)議樣本
- 2025年萃取設(shè)備項目提案報告模板
- 2025年金屬基耐磨復(fù)合材料項目規(guī)劃申請報告模稿
- 2025年企業(yè)調(diào)整策劃與和解合同
- 2025年度磚廠用地租賃合同
- 2025年企業(yè)績效管理改進(jìn)協(xié)議
- 2025年交通事故責(zé)任補償合同樣本
- 2025年居家康復(fù)護(hù)理策劃協(xié)議標(biāo)準(zhǔn)文本
- 2024年湖南省公務(wù)員錄用考試《行測》真題及答案解析
- 火災(zāi)自動報警及其消防聯(lián)動系統(tǒng)技術(shù)規(guī)格書
- 設(shè)備管理人員安全培訓(xùn)
- 分布式光伏培訓(xùn)
- 山東省房屋市政工程安全監(jiān)督機構(gòu)人員業(yè)務(wù)能力考試題庫-上(單選題)
- 2024新版(北京版)三年級英語上冊單詞帶音標(biāo)
- 財務(wù)審計服務(wù)方案投標(biāo)文件(技術(shù)方案)
- 養(yǎng)老服務(wù)機構(gòu)復(fù)工復(fù)產(chǎn)實施方案復(fù)工復(fù)產(chǎn)安全生產(chǎn)方案
- 9《黃山奇石》教學(xué)設(shè)計-2024-2025學(xué)年統(tǒng)編版語文二年級上冊
- PP、PVC-風(fēng)管制作安裝施工作業(yè)指導(dǎo)書
- 新型智慧水利項目數(shù)字孿生工程解決方案
評論
0/150
提交評論