版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,小明夜晚從路燈下A處走到B處這一過程中,他在路上的影子()A.逐漸變長 B.逐漸變短C.長度不變 D.先變短后變長2.下列圖形中,是中心對稱圖形的是()A. B. C. D.3.下列事件中是必然發(fā)生的事件是()A.拋兩枚均勻的硬幣,硬幣落地后,都是正面朝上B.射擊運動員射擊一次,命中十環(huán)C.在地球上,拋出的籃球會下落D.明天會下雨4.下列方程中,沒有實數(shù)根的方程是()A.(x-1)2=2C.3x25.已知是一元二次方程的解,則的值為()A.-5 B.5 C.4 D.-46.如圖所示,拋物線y=ax2-x+c(a>0)的對稱軸是直線x=1,且圖像經(jīng)過點(3,0),則a+c的值為(
)A.0 B.-1 C.1 D.27.在Rt△ABC中,cosA=,那么sinA的值是()A. B. C. D.8.如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為﹣3和1;④c=﹣3a,其中正確的命題是()A.①② B.②③ C.①③ D.①③④9.下列說法中正確的有()①位似圖形都相似;②兩個等腰三角形一定相似;③兩個相似多邊形的面積比是,則周長比為;④若一個矩形的四邊形分別比另一個矩形的四邊形長2,那么這兩個矩形一定相似.A.1個 B.2個 C.3個 D.4個10.在一個不透明的袋子里裝有兩個黃球和一個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球.兩次都摸到黃球的概率是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,△ABC和△A′B′C是兩個完全重合的直角三角板,∠B=30°,斜邊長為10cm.三角板A′B′C繞直角頂點C順時針旋轉(zhuǎn),當點A′落在AB邊上時,CA′旋轉(zhuǎn)所構成的扇形的弧長為_______cm.12.如圖,AB是⊙O的直徑,弦BC=2cm,F(xiàn)是弦BC的中點,∠ABC=60°.若動點E以2cm/s的速度從A點出發(fā)沿著A?B?A方向運動,設運動時間為t(s)(0≤t<3),連接EF,當t為_____s時,△BEF是直角三角形.13.如圖,一架長為米的梯子斜靠在一豎直的墻上,這時測得,如果梯子的底端外移到,則梯子頂端下移到,這時又測得,那么的長度約為______米.(,,,)14.為估計某水庫鰱魚的數(shù)量,養(yǎng)魚戶李老板先撈上150條鰱魚并在鰱魚身上做紅色的記號,然后立即將這150條鰱魚放回水庫中,一周后,李老板又撈取200條鰱魚,發(fā)現(xiàn)帶紅色記號的魚有三條,據(jù)此可估計出該水庫中鰱魚約有________條.15.如圖,⊙O的半徑為6cm,直線AB是⊙O的切線,切點為點B,弦BC∥AO,若∠A=30°,則劣弧的長為cm.16.方程是關于的一元二次方程,則二次項系數(shù)、一次項系數(shù)、常數(shù)項的和為__________.17.如圖,已知點A,點C在反比例函數(shù)y=(k>0,x>0)的圖象上,AB⊥x軸于點B,OC交AB于點D,若CD=OD,則△AOD與△BCD的面積比為__.18.如圖,AB為⊙O的直徑,C,D是⊙O上兩點,若∠ABC=50°,則∠D的度數(shù)為______.三、解答題(共66分)19.(10分)小明家飲水機中原有水的溫度為20℃,通電開機后,飲水機自動開始加熱(此過程中水溫y(℃)與開機時間x(分)滿足一次函數(shù)關系),當加熱到100℃時自動停止加熱,隨后水溫開始下降,此過程中水溫y(℃)與開機時間x(分)成反比例關系,當水溫降至20C時,飲水機又自動開始加熱…,重復上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:(1)當0≤x≤8時,求水溫y(℃)與開機時間x(分)的函數(shù)關系式;(2)求圖中t的值;(3)若小明上午八點將飲水機在通電開機(此時飲水機中原有水的溫度為20℃后即外出散步,預計上午八點半散步回到家中,回到家時,他能喝到飲水機內(nèi)不低于30℃的水嗎?請說明你的理由.20.(6分)已知拋物線y=x2+mx﹣10與x軸的一個交點是(﹣,0),求m的值及另一個交點坐標.21.(6分)如圖,在△ABC中,∠ABC=60°,⊙O是△ABC的外接圓,P為CO的延長線上一點,且AP=AC.(1)求證:AP是⊙O的切線;(2)若PB為⊙O的切線,求證:△ABC是等邊三角形.22.(8分)若一條圓弧所在圓半徑為9,弧長為,求這條弧所對的圓心角.23.(8分)如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點兩點,其中點,與軸交于點.求一次函數(shù)和反比例函數(shù)的表達式;求點坐標;根據(jù)圖象,直接寫出不等式的解集.24.(8分)關于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個實數(shù)根.(1)求m的取值范圍;(2)若m為正整數(shù),求此方程的根.25.(10分)如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系中,△OAB的三個頂點O(0,0)、A(4,1)、B(4,4)均在格點上.(1)畫出△OAB繞原點順時針旋轉(zhuǎn)后得到的△,并寫出點的坐標;(2)在(1)的條件下,求線段在旋轉(zhuǎn)過程中掃過的扇形的面積.26.(10分)在下列網(wǎng)格中,每個小正方形的邊長均為1個單位,△ABC在網(wǎng)格中的位置如圖所示:(1)在圖中畫出△ABC先向右平移2個單位,再向上平移3個單位后的圖形;(2)若點A的坐標是(-4,-3),試在圖中畫出平面直角坐標系,坐標系的原點記作O;(3)根據(jù)(2)的坐標系,作出以O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)90o后的圖形,并求出點A一共運動的路徑長.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】因為人和路燈間的位置發(fā)生了變化,光線與地面的夾角發(fā)生變化,所以影子的長度也會發(fā)生變化,進而得出答案.【詳解】當他遠離路燈走向B處時,光線與地面的夾角越來越小,小明在地面上留下的影子越來越長,所以他在走過一盞路燈的過程中,其影子的長度逐漸變長,故選:A.【點睛】此題考查了中心投影的性質(zhì),解題關鍵是了解人從路燈下走過的過程中,人與燈之間位置變化,光線與地面的夾角發(fā)生變化,從而導致影子的長度發(fā)生變化.2、D【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、是中心對稱圖形,故此選項正確;故選:D.【點睛】本題考查的知識點是中心對稱圖形,掌握中心對稱圖形的定義是解此題的關鍵.3、C【解析】試題分析:A.拋兩枚均勻的硬幣,硬幣落地后,都是正面朝上是隨機事件,故A錯誤;B.射擊運動員射擊一次,命中十環(huán)是隨機事件,故B錯誤;C.在地球上,拋出的籃球會下落是必然事件,故C正確;D.明天會下雨是隨機事件,故D錯誤;故選C.考點:隨機事件.4、D【解析】先把方程化為一般式,再分別計算各方程的判別式的值,然后根據(jù)判別式的意義判斷方程根的情況.【詳解】解:A、方程化為一般形式為:x2-2x-1=0,△=(?2)2?4×1×(?1)=8>0,方程有兩個不相等的實數(shù)根,所以B、方程化為一般形式為:2x2-x-3=0,△=(?1)2?4×2×(?3)=25>0,方程有兩個不相等的實數(shù)根,所以C、△=(?2)2?4×3×(?1)=16>0,方程有兩個不相等的實數(shù)根,所以C選項錯誤;D、△=22?4×1×4=?12<0,方程沒有實數(shù)根,所以D選項正確.故選:D.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2?4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.5、B【解析】根據(jù)方程的解的定義,把代入原方程即可.【詳解】把代入得:4-2b+6=0b=5故選:B【點睛】本題考查的是方程的解的定義,理解方程解的定義是關鍵.6、B【解析】∵拋物線的對稱軸是直線,且圖像經(jīng)過點(3,0),∴,解得:,∴.故選B.7、B【分析】利用同角三角函數(shù)間的基本關系求出sinA的值即可.【詳解】:∵Rt△ABC中,cosA=,
∴sinA==,
故選B.【點睛】本題考查了同角三角函數(shù)的關系,以及特殊角的三角函數(shù)值,熟練掌握同角三角函數(shù)的關系是解題的關鍵.8、D【分析】①觀察圖象可得,當x=1時,y=0,即a+b+c=0;②對稱軸x=﹣1,即﹣=﹣1,b=2a;③拋物線與x軸的一個交點為(1,0),對稱軸為x=﹣1,即可得ax2+bx+c=0的兩根分別為﹣3和1;④當x=1時,y=0,即a+b+c=0,對稱軸x=﹣1,即﹣=﹣1,b=2a,即可得c=﹣3a.【詳解】解:觀察圖象可知:①當x=1時,y=0,即a+b+c=0,∴①正確;②對稱軸x=﹣1,即﹣=﹣1,b=2a,∴②錯誤;③∵拋物線與x軸的一個交點為(1,0),對稱軸為x=﹣1,∴拋物線與x軸的另一個交點為(﹣3,0)∴ax2+bx+c=0的兩根分別為﹣3和1,∴③正確;④∵當x=1時,y=0,即a+b+c=0,對稱軸x=﹣1,即﹣=﹣1,b=2a,∴c=﹣3a,∴④正確.所以正確的命題是①③④.故選:D.【點睛】此題考查的是二次函數(shù)的圖象及性質(zhì),掌握二次函數(shù)的圖象及性質(zhì)與各項系數(shù)的關系是解決此題的關鍵.9、A【分析】根據(jù)位似變換的概念、相似多邊形的判定定理和性質(zhì)定理判斷.【詳解】解:①位似圖形都相似,本選項說法正確;②兩個等腰三角形不一定相似,本選項說法錯誤;③兩個相似多邊形的面積比是2:3,則周長比為,本選項說法錯誤;④若一個矩形的四邊分別比另一個矩形的四邊長2,那么這兩個矩形對應邊的比不一定相等,兩個矩形不一定一定相似,本選項說法錯誤;∴正確的只有①;故選:A.【點睛】本題考查的是位似變換、相似多邊形的判定和性質(zhì),掌握位似變換的概念、相似多邊形的判定定理和性質(zhì)定理是解題的關鍵.10、A【解析】首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與兩次都摸到黃球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結果,其中兩次都摸到黃球的有4種結果,∴兩次都摸到黃球的概率為,故選A.【點睛】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.二、填空題(每小題3分,共24分)11、【分析】根據(jù)Rt△ABC中的30°角所對的直角邊是斜邊的一半、直角三角形斜邊上的中線等于斜邊的一半以及旋轉(zhuǎn)的性質(zhì)推知△AA′C是等邊三角形,所以根據(jù)等邊三角形的性質(zhì)利用弧長公式來求CA′旋轉(zhuǎn)所構成的扇形的弧長.【詳解】解:∵在Rt△ABC中,∠B=30°,AB=10cm,∴AC=AB=5cm.根據(jù)旋轉(zhuǎn)的性質(zhì)知,A′C=AC,∴A′C=AB=5cm.∴點A′是斜邊AB的中點,∴AA′=AB=5cm.∴AA′=A′C=AC,∴∠A′CA=60°.∴CA′旋轉(zhuǎn)所構成的扇形的弧長為:(cm).故答案為:.12、1或1.75或2.25s【解析】試題分析:∵AB是⊙O的直徑,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.則當0≤t<3時,即點E從A到B再到O(此時和O不重合).若△BEF是直角三角形,則當∠BFE=90°時,根據(jù)垂徑定理,知點E與點O重合,即t=1;當∠BEF=90°時,則BE=BF=,此時點E走過的路程是或,則運動時間是s或s.故答案是t=1或或.考點:圓周角定理.13、【分析】直接利用銳角三角函數(shù)關系得出,的長,進而得出答案.【詳解】由題意可得:∵,,,解得:,∵,,,解得:,則,答:的長度約為米.故答案為.【點睛】此題主要考查了解直角三角形的應用,正確得出,的長是解題關鍵.14、10000【解析】試題解析:設該水庫中鰱魚約有x條,由于李老板先撈上150條鰱魚并在上做紅色的記號,然后立即將這150條鰱魚放回水庫中,一周后,李老板又撈取200條鰱魚,數(shù)一數(shù)帶紅色記號的魚有三條,由此依題意得200:3=x:150,∴x=10000,∴估計出該水庫中鰱魚約有10000條.15、.【解析】根據(jù)切線的性質(zhì)可得出OB⊥AB,從而求出∠BOA的度數(shù),利用弦BC∥AO,及OB=OC可得出∠BOC的度數(shù),代入弧長公式即可得出答案:∵直線AB是⊙O的切線,∴OB⊥AB(切線的性質(zhì)).又∵∠A=30°,∴∠BOA=60°(直角三角形兩銳角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(兩直線平行,內(nèi)錯角相等).又∵OB=OC,∴△OBC是等邊三角形(等邊三角形的判定).∴∠BOC=60°(等邊三角形的每個內(nèi)角等于60°).又∵⊙O的半徑為6cm,∴劣弧的長=(cm).16、9【分析】根據(jù)一元二次方程的定義可確定m的值,即可得二次項系數(shù)、一次項系數(shù)、常數(shù)項的值,進而可得答案.【詳解】∵方程是關于的一元二次方程,∴m2-2=2,m+2≠0,解得:m=2,∴二次項系數(shù)為4,一次項系數(shù)為4,常數(shù)項為1,∴二次項系數(shù)、一次項系數(shù)、常數(shù)項的和為4+4+1=9,故答案為:9【點睛】本題考查一元二次方程的定義,只含有一個未知數(shù)(一元),并且未知數(shù)項的最高次數(shù)是2(二次)的整式方程叫做一元二次方程;一元二次方程經(jīng)過整理都可化成一般形式ax2+bx+c=0(a≠0),其中ax2叫做二次項,a是二次項系數(shù);bx叫做一次項,b是一次項系數(shù);c叫作做常數(shù)項.注意不要漏掉a≠0的條件,避免漏解.17、1.【分析】作CE⊥x軸于E,如圖,利用平行線分線段成比例得到===,設D(m,n),則C(2m,2n),再根據(jù)反比例函數(shù)圖象上點的坐標特征得到k=4mn,則A(m,4n),然后根據(jù)三角形面積公式用m、n表示S△AOD和S△BCD,從而得到它們的比.【詳解】作CE⊥x軸于E,如圖,∵DB∥CE,∴===,設D(m,n),則C(2m,2n),∵C(2m,2n)在反比例函數(shù)圖象上,∴k=2m×2n=4mn,∴A(m,4n),∵S△AOD=×(4n﹣n)×m=mn,S△BCD=×(2m﹣m)×n=mn∴△AOD與△BCD的面積比=mn:mn=1.故答案為1.【點睛】考核知識點:平行線分線段成比例,反比例函數(shù);數(shù)形結合,利用平行線分線段成比例,反比例函數(shù)定義求出點的坐標關系是關鍵.18、40°.【解析】根據(jù)直徑所對的圓心角是直角,然后根據(jù)直角三角形的兩銳角互余求得∠A的度數(shù),最后根據(jù)同弧所對的圓周角相等即可求解.【詳解】∵AB是圓的直徑,∴∠ACB=90°,∴∠A=90°-∠ABC=90°-50°=40°.∴∠D=∠A=40°.故答案為:40°.【點睛】本題考查了圓周角定理,直徑所對的圓周角是直角以及同弧所對的圓周角相等,理解定理是關鍵.三、解答題(共66分)19、(1)y=10x+1;(2)t的值為2;(3)不能,理由見解析【分析】(1)根據(jù)一次函數(shù)圖象上兩點的坐標,利用待定系數(shù)法即可求出當0≤x≤8時,水溫y(℃)與開機時間x(分)的函數(shù)關系式;(2)由點(8,100),利用待定系數(shù)法即可求出當8≤x≤t時,水溫y(℃)與開機時間x(分)的函數(shù)關系式,再將y=1代入該函數(shù)關系式中求出x值即可;(3)將x=30代入反比例函數(shù)關系式中求出y值,再與30比較后即可得出結論.【詳解】(1)當0≤x≤8時,設水溫y(℃)與開機時間x(分)的函數(shù)關系式為y=kx+b(k≠0).將(0,1)、(8,100)代入y=kx+b中,得:,解得:,∴當0≤x≤8時,水溫y(℃)與開機時間x(分)的函數(shù)關系式為y=10x+1.(2)當8≤x≤t時,設水溫y(℃)與開機時間x(分)的函數(shù)關系式為y(m≠0),將(8,100)代入y中,得:100,解得:m=800,∴當8≤x≤t時,水溫y(℃)與開機時間x(分)的函數(shù)關系式為y.當y1時,x=2,∴圖中t的值為2.(3)當x=30時,.答:小明上午八點半散步回到家中時,不能喝到飲水機內(nèi)不低于30°C的水.【點睛】本題考查了一次函數(shù)的應用、待定系數(shù)法求一次(反比例)函數(shù)解析式以及一次(反比例)函數(shù)圖象上點的坐標特征,解答本題的關鍵是:(1)根據(jù)點的坐標,利用待定系數(shù)法求出一次函數(shù)關系式;(2)根據(jù)點的坐標,利用待定系數(shù)法求出反比例函數(shù)關系式;(3)將x=30代入反比例函數(shù)關系式中,求出y值.20、m=﹣;另一個交點坐標(2,0)【分析】首先將點(﹣,0)的坐標代入拋物線的解析式中,即可求得m的值,再令拋物線中y=0,可得出關于x的一元二次方程,即可求得拋物線與x軸的另一交點的坐標.【詳解】解:根據(jù)題意得,5﹣m﹣10=0,所以m=﹣;得拋物線的解析式為y=x2﹣x﹣10,∵x2﹣x﹣10=0,解得x1=﹣,x2=2,∴拋物線與x軸的另一個交點坐標(2,0).故答案為:m=﹣;另一個交點坐標(2,0).【點睛】本題考查了拋物線與軸的交點:從二次函數(shù)的交點式(a,b,c是常數(shù),a≠0)中可直接得出拋物線與軸的交點坐標,.21、(1)詳見解析;(2)詳見解析【分析】(1)連接OA,由等邊三角形性質(zhì)和圓周角定理可得∠AOC的度數(shù),從而得到∠OCA,再由AP=AC得到∠PAC,從而算出∠PAO的度數(shù);(2由切線長定理得PA,PB,從而說明PO垂直平分AB,得到CB=CA,再根據(jù)∠ABC=60°,從而判定等邊三角形.【詳解】解:(1)證明:連接.又是半徑,是的切線.(2)證明:連接是的切線,是的垂直平分線.是等邊三角形.【點睛】本題考查了外接圓的性質(zhì),垂直平分線的判定和性質(zhì),切線的性質(zhì),等腰三角形的性質(zhì),等邊三角形的判定,此題難度適中,解題的關鍵是準確作出輔助線,從而進行證明.22、【分析】根據(jù)弧長公式計算即可.【詳解】∵,,∴,∴【點睛】此題考查弧長公式,熟記公式并掌握各字母的意義即可正確解答.23、(1)y=-x-2,y=-,(2)C(1,-3),(3)-3<x<0或x>1.【分析】(1)將點B的坐標代入一次函數(shù)中即可求出一次函數(shù)的表達式,進而求出A點坐標,然后再將A點坐標代入反比例函數(shù)中即可求出反比例函數(shù)的表達式;(2)將一次函數(shù)與反比例函數(shù)聯(lián)立即可求出C點坐標;(3)根據(jù)兩交點坐標及圖象即可得出答案.【詳解】解:(1)由點B(-2,0)在一次函數(shù)y=-x+b上,得b=-2,∴一次函數(shù)的表達式為y=-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版酒店安保服務與旅游安全監(jiān)管合同3篇
- 二零二五版擔保居間服務線上線下融合合同3篇
- 二零二五年砂石料采購合同2篇
- 二零二五版國際教育服務合同范本及學生權益保護條款3篇
- 二零二五年度變壓器安裝與環(huán)保排放標準合同3篇
- 樣板間裝修工程2025版知識產(chǎn)權合同3篇
- 二零二五版單位食堂餐飲服務設施租賃合同3篇
- 二零二五年辣椒種植與加工一體化項目合同3篇
- 二零二五版電子商務移動應用開發(fā)與推廣合同2篇
- 二零二五年酒店會議室裝修與設備安裝服務合同3篇
- 新華健康體檢報告查詢
- 2024版智慧電力解決方案(智能電網(wǎng)解決方案)
- 公司SWOT分析表模板
- 小學預防流行性感冒應急預案
- 肺癌術后出血的觀察及護理
- 生物醫(yī)藥大數(shù)據(jù)分析平臺建設-第1篇
- 基于Android的天氣預報系統(tǒng)的設計與實現(xiàn)
- 沖鋒舟駕駛培訓課件
- 美術家協(xié)會會員申請表
- 聚合收款服務流程
- 中石化浙江石油分公司中石化溫州靈昆油庫及配套工程項目環(huán)境影響報告書
評論
0/150
提交評論