第五節(jié)-函數(shù)的極值與最大最小值課件_第1頁(yè)
第五節(jié)-函數(shù)的極值與最大最小值課件_第2頁(yè)
第五節(jié)-函數(shù)的極值與最大最小值課件_第3頁(yè)
第五節(jié)-函數(shù)的極值與最大最小值課件_第4頁(yè)
第五節(jié)-函數(shù)的極值與最大最小值課件_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一、函數(shù)的極值及其求法一、函數(shù)的極值及其求法1注意:為極大點(diǎn)為極小點(diǎn)不是極值點(diǎn)2)對(duì)常見(jiàn)函數(shù),極值可能出現(xiàn)在導(dǎo)數(shù)為

0

或不存在的點(diǎn).1)函數(shù)的極值是函數(shù)的局部性質(zhì).例如(P146例4)為極大點(diǎn),是極大值

是極小值為極小點(diǎn),

注意:為極大點(diǎn)為極小點(diǎn)不是極值點(diǎn)2)對(duì)常見(jiàn)函數(shù),極值可2函數(shù)極值的求法費(fèi)馬(fermat)引理----必要條件在駐點(diǎn)或者是連續(xù)不可導(dǎo)點(diǎn)中去尋找.因此尋求極值點(diǎn)的方法:注意:例如,函數(shù)極值的求法費(fèi)馬(fermat)引理----必要條件在駐點(diǎn)3定理1

(極值第一判別法)(是極值點(diǎn)情形)且在空心鄰域內(nèi)有導(dǎo)數(shù),(1)“左正右負(fù)”,(2)“左負(fù)右正”,定理1(極值第一判別法)(是極值點(diǎn)情形)且在空心鄰域內(nèi)有4求極值的步驟:(不是極值點(diǎn)情形)(1)給出定義域,并找出定義域內(nèi)所給函數(shù)的駐點(diǎn)及連續(xù)不可導(dǎo)點(diǎn);(2)考察這些點(diǎn)兩側(cè)導(dǎo)函數(shù)的符號(hào),從而確定極值點(diǎn);(3)求出極值點(diǎn)的函數(shù)值,即為極值.求極值的步驟:(不是極值點(diǎn)情形)(1)給出定義域,并找出定義5例1.

求函數(shù)的極值.解:1)求導(dǎo)數(shù)2)求極值可疑點(diǎn)令得得3)列表判別是極大點(diǎn),其極大值為是極小點(diǎn),其極小值為注意:函數(shù)的不可導(dǎo)點(diǎn),也可能是函數(shù)的極值點(diǎn).例1.求函數(shù)的極值.解:1)求導(dǎo)數(shù)2)求極值可疑點(diǎn)令6定理2

(極值第二判別法)二階導(dǎo)數(shù),且則

在點(diǎn)

取極大值;則

在點(diǎn)

取極小值.證:(1)存在由第一判別法知(2)類似可證.定理2(極值第二判別法)二階導(dǎo)數(shù),且則7例2解圖形如下例2解圖形如下8第五節(jié)-函數(shù)的極值與最大最小值課件9注:運(yùn)用第二充分條件求極值也有它的局限性.若?(x)在駐點(diǎn)這三個(gè)函數(shù)在x=0處就分別屬于這三種情況.從而當(dāng)只能用第一充分條件來(lái)判定處的二階導(dǎo)數(shù)?(x)在處可能有極大值,也可能有極小值,例如:也可能沒(méi)有極值.(只需點(diǎn)連續(xù)即可)注:運(yùn)用第二充分條件求極值也有它的局限性.若?(x)在駐點(diǎn)這10例3.

求函數(shù)的極值.解:1)求導(dǎo)數(shù)2)求駐點(diǎn)令得駐點(diǎn)3)判別因故為極小值;又故需用第一判別法判別.例3.求函數(shù)的極值.解:1)求導(dǎo)數(shù)2)求駐點(diǎn)令得11例4例412定理3

(判別法的推廣)則:數(shù),且1)當(dāng)為偶數(shù)時(shí),是極小點(diǎn);是極大點(diǎn).2)當(dāng)為奇數(shù)時(shí),為極值點(diǎn),且不是極值點(diǎn).當(dāng)充分接近時(shí),上式左端正負(fù)號(hào)由右端第一項(xiàng)確定,故結(jié)論正確.證:利用在點(diǎn)的泰勒公式,可得定理3(判別法的推廣)則:數(shù),且1)當(dāng)為偶數(shù)時(shí)13例如,例3中所以不是極值點(diǎn).極值的判別法(定理1~定理3)都是充分的.

說(shuō)明:當(dāng)這些充分條件不滿足時(shí),不等于極值不存在.例如:為極大值,但不滿足定理1~定理3的條件.例如,例3中所以不是極值點(diǎn).極值的判別法(定理1~14二、最大值與最小值問(wèn)題

則其最值只能在極值點(diǎn)或端點(diǎn)處達(dá)到.求函數(shù)最值的方法:(1)求在內(nèi)的極值可疑點(diǎn)(2)最大值最小值----駐點(diǎn)和不可導(dǎo)點(diǎn)二、最大值與最小值問(wèn)題則其最值只能在極值點(diǎn)或端點(diǎn)處達(dá)到.15特別:

當(dāng)在內(nèi)只有一個(gè)極值可疑點(diǎn)時(shí),

當(dāng)在上單調(diào)時(shí),最值必在端點(diǎn)處達(dá)到.若在此點(diǎn)取極大值,則也是最大值.(小)

對(duì)應(yīng)用問(wèn)題,有時(shí)可根據(jù)實(shí)際意義判別求出的可疑點(diǎn)是否為最大值點(diǎn)或最小值點(diǎn).(小)特別:當(dāng)在內(nèi)只有一個(gè)16例5.

求函數(shù)在閉區(qū)間上的最大值和最小值.解:故函數(shù)在取最小值0;在取最大值.例5.求函數(shù)在閉區(qū)間上的最大值和最小值.解:故函數(shù)在取17求最大值。例6.

設(shè)是任意兩正數(shù),滿足:解:設(shè)即求f(x)在(0,a)內(nèi)的最大值令得是區(qū)間唯一的駐點(diǎn),故為區(qū)間(0,a)之間的最大值求最大值。例6.18(k

為某一常數(shù))例7.

鐵路上AB段的距離為100km,工廠C距A處20AC⊥

AB,要在AB線上選定一點(diǎn)D向工廠修一條已知鐵路與公路每公里貨運(yùn)價(jià)之比為3:5,為使貨D點(diǎn)應(yīng)如何選取?20解:設(shè)則令得又所以為唯一的極小點(diǎn),故AD=15km時(shí)運(yùn)費(fèi)最省.總運(yùn)費(fèi)物從B運(yùn)到工廠C的運(yùn)費(fèi)最省,從而為最小點(diǎn),問(wèn)Km,公路,(k為某一常數(shù))例7.鐵路上AB段的距離為10019實(shí)際問(wèn)題求最值應(yīng)注意:(1)建立目標(biāo)函數(shù);(2)求最值;實(shí)際問(wèn)題求最值應(yīng)注意:(1)建立目標(biāo)函數(shù);(2)求最值;20清楚(視角

最大)?觀察者的眼睛1.8m,例8.

一張1.4m高的圖片掛在墻上,它的底邊高于解:設(shè)觀察者與墻的距離為xm,則令得駐點(diǎn)根據(jù)問(wèn)題的實(shí)際意義,觀察者最佳站位存在,唯一,駐點(diǎn)又因此觀察者站在距離墻2.4m處看圖最清楚.問(wèn)觀察者在距墻多遠(yuǎn)處看圖才最清楚(視角最大)?觀察者的眼睛1.8m,例8.21內(nèi)容小結(jié)1.連續(xù)函數(shù)的極值(1)極值可疑點(diǎn):使導(dǎo)數(shù)為0或不存在的點(diǎn)(2)第一充分條件過(guò)由正變負(fù)為極大值過(guò)由負(fù)變正為極小值(3)第二充分條件為極大值為極小值內(nèi)容小結(jié)1.連續(xù)函數(shù)的極值(1)極值可疑點(diǎn):使導(dǎo)數(shù)為022最值點(diǎn)應(yīng)在極值點(diǎn)和邊界點(diǎn)上找;f(x)在某開(kāi)區(qū)間或閉區(qū)間內(nèi)連續(xù)可導(dǎo),若有唯一的極值點(diǎn),則必最值點(diǎn)。2.連續(xù)函數(shù)的最值

在實(shí)際問(wèn)題中,如果f(x)有唯一的駐點(diǎn),則一般為最值點(diǎn)。最值點(diǎn)應(yīng)在極值點(diǎn)和邊界點(diǎn)上找;f(x)在23思考與練習(xí)1.設(shè)則在點(diǎn)a處().的導(dǎo)數(shù)存在,取得極大值;取得極小值;的導(dǎo)數(shù)不存在.B提示:利用極限的保號(hào)性.思考與練習(xí)1.設(shè)則在點(diǎn)a處(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論