樂山市重點中學(xué)2024屆數(shù)學(xué)高一上期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
樂山市重點中學(xué)2024屆數(shù)學(xué)高一上期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
樂山市重點中學(xué)2024屆數(shù)學(xué)高一上期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
樂山市重點中學(xué)2024屆數(shù)學(xué)高一上期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
樂山市重點中學(xué)2024屆數(shù)學(xué)高一上期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

樂山市重點中學(xué)2024屆數(shù)學(xué)高一上期末學(xué)業(yè)水平測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.命題P:“,”的否定為A., B.,C., D.,2.我國東漢數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用一副“弦圖”給出了勾股定理的證明,后人稱其為“趙爽弦圖”,它是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如圖所示,在“趙爽弦圖”中,若,,,則()A. B.C. D.3.已知角α的始邊與x軸的正半軸重合,頂點在坐標原點,角α終邊上的一點P到原點的距離為,若α=,則點P的坐標為()A.(1,) B.(,1)C.() D.(1,1)4.已知,,,則的大小關(guān)系A(chǔ). B.C. D.5.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.函數(shù)的圖像向左平移個單位長度后是奇函數(shù),則在上的最小值是()A. B.C. D.7.在梯形中,,,是邊上的點,且.若記,,則()A. B.C. D.8.某幾何體的三視圖都是全等圖形,則該幾何體一定是()A.圓柱 B.圓錐C.三棱錐 D.球體9.已知,則的值為()A B.1C. D.10.給定函數(shù):①;②;③;④,其中在區(qū)間上單調(diào)遞減函數(shù)序號是()A.①② B.②③C.③④ D.①④二、填空題:本大題共6小題,每小題5分,共30分。11.在上,滿足的取值范圍是______.12.若直線l在x軸上的截距為1,點到l的距離相等,則l的方程為______.13.計算__________14.函數(shù)的圖象的對稱中心的坐標為___________.15.經(jīng)過點作圓的切線,則切線的方程為__________16.已知,則___________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù)(Ⅰ)若是奇函數(shù),求的值(Ⅱ)當時,求函數(shù)在上的值域,判斷函數(shù)在上是否為有界函數(shù),并說明理由(Ⅲ)若函數(shù)在上是以為上界的函數(shù),求實數(shù)的取值范圍18.已知二次函數(shù),若不等式的解集為,且方程有兩個相等的實數(shù)根.(1)求的解析式;(2)若,成立,求實數(shù)m的取值范圍.19.如圖,直三棱柱中,分別是的中點,.(1)證明:平面;(2)證明:平面平面.20.已知向量,滿足,,.(1)求向量與夾角;(2)求的值.21.已知,,,.(1)求的值;(2)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】“全稱命題”的否定是“特稱命題”根據(jù)全稱命題的否定寫出即可【題目詳解】解:命題P:“,”的否定是:,故選B【題目點撥】本題考察了“全稱命題”的否定是“特稱命題”,屬于基礎(chǔ)題.2、C【解題分析】利用平面向量的線性運算及平面向量的基本定理求解即可【題目詳解】∵∴∵∴=∴=,∴故選:C3、D【解題分析】設(shè)出P點坐標(x,y),利用正弦函數(shù)和余弦函數(shù)的定義結(jié)合的三角函數(shù)值求得x,y值得答案【題目詳解】設(shè)點P的坐標為(x,y),則由三角函數(shù)的定義得即故點P的坐標為(1,1).故選D【題目點撥】本題考查任意角的三角函數(shù)的定義,是基礎(chǔ)的計算題4、D【解題分析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出【題目詳解】∵0<a=0.71.3<1,b=30.2>1,c=log0.25<0,∴c<a<b故選D【題目點撥】本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題5、B【解題分析】分析】首先根據(jù)可得:或,再判斷即可得到答案.【題目詳解】由可得:或,即能推出,但推不出“”是“”的必要不充分條件故選:B【題目點撥】本題主要考查必要不充分條件的判斷,同時考查根據(jù)三角函數(shù)值求角,屬于簡單題.6、D【解題分析】由函數(shù)圖像平移后得到的是奇函數(shù)得,再利用三角函數(shù)的圖像和性質(zhì)求在上的最小值.【題目詳解】平移后得到函數(shù)∵函數(shù)為奇函數(shù),故∵,∴,∴函數(shù)為,∴,時,函數(shù)取得最小值為故選【題目點撥】本題主要考查三角函數(shù)圖像的變換,考查三角函數(shù)的奇偶性和在區(qū)間上的最值,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.7、A【解題分析】作出圖形,由向量加法的三角形法則得出可得出答案.【題目詳解】如下圖所示:由題意可得,由向量加法的三角形法則可得.故選:A.【題目點撥】本題考查利用基底來表示向量,涉及平面向量加法的三角形法則的應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.8、D【解題分析】任意方向上的視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓【題目詳解】球、長方體、三棱錐、圓錐中,任意方向上的視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是等圓,故答案為:D【題目點撥】本題考查簡單空間圖形的三視圖,本題解題的關(guān)鍵是看出各個圖形的在任意方向上的視圖,本題是一個基礎(chǔ)題9、A【解題分析】知切求弦,利用商的關(guān)系,即可得解.【題目詳解】,故選:A10、B【解題分析】①,為冪函數(shù),且的指數(shù),在上為增函數(shù);②,,為對數(shù)型函數(shù),且底數(shù),在上為減函數(shù);③,在上為減函數(shù),④為指數(shù)型函數(shù),底數(shù)在上為增函數(shù),可得解.【題目詳解】①,為冪函數(shù),且的指數(shù),在上為增函數(shù),故①不可選;②,,為對數(shù)型函數(shù),且底數(shù),在上為減函數(shù),故②可選;③,在上為減函數(shù),在上為增函數(shù),故③可選;④為指數(shù)型函數(shù),底數(shù)在上為增函數(shù),故④不可選;綜上所述,可選的序號為②③,故選B.【題目點撥】本題考查基本初等函數(shù)的單調(diào)性,熟悉基本初等函數(shù)的解析式、圖像和性質(zhì)是解決此類問題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】結(jié)合正弦函數(shù)圖象可知時,結(jié)合的范圍可得到結(jié)果.【題目詳解】本題正確結(jié)果:【題目點撥】本題考查根據(jù)三角函數(shù)值的范圍求解角所處的范圍,關(guān)鍵是能夠熟練應(yīng)用正弦函數(shù)圖象得到對應(yīng)的自變量的取值集合.12、或【解題分析】考慮斜率不存在和存在兩種情況,利用點到直線距離公式計算得到答案.【題目詳解】顯然直線軸時符合要求,此時的方程為.當直線l的斜率存在時,設(shè)直線l的斜率為k,則l的方程為,即.∵A,B到l的距離相等∴,∴,∴,∴直線l的方程為.故答案為或【題目點撥】本題考查了點到直線的距離公式,忽略掉斜率不存在的情況是容易犯的錯誤.13、5【解題分析】化簡,故答案為.14、【解題分析】利用正切函數(shù)的對稱中心求解即可.【題目詳解】令=(),得(),∴對稱中心的坐標為故答案:()15、【解題分析】點在圓上,由,則切線斜率為2,由點斜式寫出直線方程.【題目詳解】因為點在圓上,所以,因此切線斜率為2,故切線方程為,整理得故答案為:16、【解題分析】根據(jù)同角三角函數(shù)的關(guān)系求得,再運用正弦、余弦的二倍角公式求得,由正弦和角公式可求得答案.【題目詳解】解:因為,所以,所以,所以.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是(3)或【解題分析】(1)根據(jù)奇函數(shù)定義得,解得的值(2)先分離得再根據(jù)單調(diào)性求值域,最后根據(jù)值域判定是否成立(3)轉(zhuǎn)化為不等式恒成立,再分離變量得最值,最后根據(jù)最值求實數(shù)的取值范圍試題解析:解:()由是奇函數(shù),則,得,即,∴,()當時,∵,∴,∴,滿足∴在上為有界函數(shù)()若函數(shù)在上是以為上界的有界函數(shù),則有在上恒成立∴,即,∴,化簡得:,即,上面不等式組對一切都成立,故,∴或18、(1);(2).【解題分析】(1)根據(jù)的解集為,可得1,2即為方程的兩根,根據(jù)韋達定理,可得b,c的表達式,根據(jù)有兩個相等的實數(shù)根.可得該方程,即可求得a的值,即可得答案;(2)由題意得使成立,則只需,利用基本不等式,即可求得答案.【題目詳解】(1)因為的解集為,所以1,2即為方程的兩根,由韋達定理得,且,解得,,又方程有兩個相等實數(shù)根,所以,即,,解得,所以,所以;(2)由(1)可得,,所以,則,,又,當且僅當,即x=2時等號成立,所以,使成立,等價為成立,所以.【題目點撥】已知解集求一元二次不等式參數(shù)時,關(guān)鍵是靈活應(yīng)用韋達定理,進行求解,處理存在性問題時,需要,若處理恒成立問題時,需要,需認真區(qū)分問題,再進行解答,屬中檔題.19、(1)見解析;(2)見解析【解題分析】(1)連結(jié),交點,連,推出//1,即可證明平面;(2)取的中點,連結(jié),證明四邊形是平行四邊形,證明,得到平面,然后證明平面平面試題解析:(1)連結(jié),交點,連,則是的中點,因為是的中點,故//.因為平面,平面.所以//平面.(2)取的中點,連結(jié),因為是的中點,故//且.顯然//,且,所以//且則四邊形是平行四邊形.所以//.因為,所以又,所以直線平面.因為//,所以直線平面.因為平面,所以平面平面20、(1)(2)【解題分析】(1)先求得,然后利用夾角公式求得向量與的夾角.(2)利用平方的方法求得的值.【小問1詳解】設(shè)向量與的夾角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論