




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
StrengthandDeformationofMemberswithTorsionINTRODUCTIONTorsioninreinforcedconcretestructuresoftenarisesfromcontinuitybetweenmembers.Forthisreasontorsionreceived;relativelyscantattentionduringthefirsthalfofthiscentury,andtheomissionfromdesignconsiderationsapparentlyhadnoseriousconsequences.During;thelast10to15years,agreatincreaseinresearchactivityhasadvancedtheunderstandingoftheproblemsignificantly.Numerousaspectsoftorsioninconcretehavebeen,andcurrentlyarebeing,examinedinvariouspartsoftheworld.ThefirstsignificantorganizedpoolingofknowledgeandresearcheffortinthisfieldwasasymposiumsponsoredbytheAmericanConcreteInstitute.Thesymposiumvolumealsoreviewsmuchofthevaluablepioneeringwork.Mostcodereferencestotorsiontodatehavereliedonideasborrowedfromthebehaviorofhomogeneousisotropicelasticmaterials.ThecurrentACIcode8-2incorporatesforthefirsttimedetaileddesignrecommendationsfortorsion.Theserecommendationsarebasedonaconsiderablevolumeofexperimentalevidence,buttheyarelikelytobefurthermodifiedasadditionalinformationfromcurrentresearcheffortsisconsolidated.Torsionmayariseasaresultofprimaryorsecondaryactions.Thecaseofprimarytorsionoccurswhentheexternalloadhasnoalternativetobeingresistedbutbytorsion.Insuchsituationsthetorsion,requiredtomaintainstaticequilibrium,canbeuniquelydetermined.Thiscasemayalsoberefer-redtoasequilibriumtorsion.Itisprimarilyastrengthproblembecausethestructure,oritscomponent,willcollapse訐thetorsionalresistancecannotbesupplied.Asimplebeam,receivingeccentriclineloadingsalongitsspan,cantileversandeccentricallyloadedboxgirders,asillustratedinFigs.8.1and8.8,areexamplesofprimaryorequilibriumtorsion.Instaticallyindeterminatestructures,torsioncartalsoariseasasecondaryactionfromtherequirementsofcontinuity.Disregardforsuchcontinuityinthedesignmayleadtoexcessivecrackwidthsbutneednothavemoreseriousconsequences.Oftendesignersintuitivelyneglectsuchsecondarytorsionaleffects.Theedgebeamsofframes,supportingslabsorsecondary-beams,aretypicalofthissituation(seeFig.8.2).Inarigidjointedspacestructureitishardlypossibletoavoidtorsionarisingfromthecompatibilityofdeformations.Certainstructures,suchasshellselasticallyrestrainedbyedgebeams,"aremoresensitivetothistypeoftorsionthanareother.Thepresentstateofknowledgeallowsarealisticassessment.ofthetorsionthatmayariseinstaticallyindeterminatereinforcedconcretestructuresatvariousstagesof
theloading.kJFig.8.1.Examplesofprimaryorequihbnumtor&ton.Torsioninconcretestructuresrarelyoccurs.withoutotheractions.Usuallyflexure,shear,andaxialforcesarealsopresent.Agreatmanyofthemorerecentstudieshaveattemptedtoestablishthelawsofinteractionsthatmayexistbetweentorsionandotherstructuralactions.Becauseofthelargenumberofparametersinvolved,someeffortisstillrequiredtoassessreliablyallaspectsofthiscomplexbehavior.
Hgr8+i.Torsioninstaiicatlyindeierminatestrucluresh8.2PLAINCONCRETESUBJECTTOTORSIONThebehaviorofreinforcedconcreteintorsion,beforetheonsetofcracking,canbebasedorsthestudyofplainconcretebecausethecontributionofrein-forcementatthisstageisnegligible.ElasticBehaviorFortheassessmentoftorsionaleffectsinplainconcrete,wecanusethewell-knownapproachpresentedinmosttextsonstructuralmechanics.TheclassicalsolutionofSt.Venantcanbeappliedtothecommonrectangularconcretesection.Accordingly,themaximumtorsionalshearingstressvtisgeneratedatthemiddleofthelongsideandcanbeobtainedfromrx^y
whereT=torsionalmomentatthesectiony,x=overalldimensionsoftherectangularsection,x<y屮t=astressfactorbeingafunctiony/x,asgiveninFig.8.3Itmaybeequallyasimportanttoknowtheload-displacementrelationshipforthemember.Thiscanbederivedfromthefamiliarrelationship.d0tTd0tTGCwhere0t,=theangleoftwistT=theappliedtorque,whichmaybeafunctionofthedistancealongthespanG=themodulusinshearasdefinedinEq.7.37C=thetorsionalmomentofinertia,sometimesreferredtoastorsionconstantorequivalentpolarmomentsofinertiaz=distancealongmemberForrectangularsections,wehavec=fitx3y (8.3)inwhich0t,acoefficientdependentontheaspectratioy/xofthesection(Fig.8.3),allowsforthenonlineardistributionofshearstrainsacrossthesection.Thesetermsenablethetorsionalstiffnessofamemberoflengthsection.ltobedefinedasthemagnitudeofthetorquerequiredtocauseunitangleoftwistoverthislengthasInthegeneralelasticanalysisofastaticallyindeterminatestructure,boththetorsionalstiffnessandtheflexuralstiffnessofmembersmayberequired.Equation8.4forthetorsionalstiffnessofamembermaybecomparedwiththeequationfortheflexuralstiffnessofamemberwithfarendrestrained,definedasthemomentrequiredtocauseunitrotation,4EI/1,whereEI=flexuralrigidityofasection.
0141710 14 18 2,2 2.6 30 3.5 4.0 4屆5.0678910豐83.Stiffnessandstressfacersforrectangularsecuonssubjectedtotorsion.Thebehaviorofcompoundsections,TandLshapes,ismorecomplex.However,followingBach'ssuggestion,itiscustomarytoassumethatasuitablesubdivisionofthesectionintoitsconstituentrectanglesisanaccept-ableapproximationfordesignpurposes.Accordinglyitisassumedthateach,rectangleresistsaportionoftheexternaltorqueinproportiontoitstorsionalrigidity.AsFig.8.4ashows,theoverhangingpartsoftheflangesshouldbetakenwithoutoverlapping.Inslabsformingtheflangesofbeams,theeffectivelengthofthecontributingrectangleshouldnotbetakenasmorethanthreetimestheslabthickness.Forthecaseofpuretorsion,thisisaconservativeapproximation.F^.8-4.ThesubdiveionofcompoundsectionsforF^.8-4.Thesubdiveionofcompoundsectionsfortorsionalanalysis.UsingBach'sapproximation,8-5theportionofthetotaltorqueTresistedbyelement2inFig.8.4ais(85)andtheresultingmaximumtorsionalshearstressisfromEq.8.1Theapproximationisconservativebecausethe"junctioneffect"hasbeenneglected.Compoundsectionsinwhichshearmustbesubdividedinadifferentway.Theelastictorsionalshearstressflowcanoccur,asinboxsections,Figure8.4cillustratestheprocedure.distributionovercompoundcrosssectionsmaybebestvisualizedbyPrandtl'smembraneanalogy,theprinciplesofwhichmaybefoundinstandardworksconcretestructures,weseldomencountertheonelasticity."Inreinforcedforegoingassumptionsassociatedwithlinearconditionsunderwhichtheelasticbehavioraresatisfied.PlasticBehaviorInductilematerialsitispossibletoattainastateatwhichyieldinshearoccuroverthewholeareaofaparticularcrosssection.Ifyieldingoccursoverthewholesection,theplastictorquecanbecomputedwithrelativeease.ConsiderthesquaresectionappearinginFig.8.5,whereyieldinshearVtyhassetinConsiderthesquaresectionappearinginFig.8.5,whereyieldinshearVtyhassetinthequadrants.ThetotalshearforceVactingoveronequadrantis,11b<5.,11b<5.Torsionalyieldingofasquaresec俎on.TTThesameresultsmaybeobtainedusingNadai's‘sandheapanalogy.'Accordingtothisanalogythevolumeofsandplacedoverthegivencrosssectionisproportionaltotheplastictorquesustainedbythissection.theheap(orroof)overtherectangularsection(seeFig.8.6)hasaheightxv.Fi誓乩亂Fi誓乩亂Nadai?ssandheapanalogywherex=smalldimensionofthecrosssection.midoverthesquaresection(Fig.8.5)is(呦Thevolumeoftheheapovertheoblongsection(Fig.8.6)is
HenceT_
x2yHenceT_
x2y?7}where(8,7a)Itisevidentthat屮ty=3whenx/y=IandO,y=2whenx/y=OItmaybeseenthatEq.8.7issimilartotheexpressionobtainedforelasticbehavior,Eq.8.1.Concreteisnotductileenough,particularlyintension,topermitaperfectplasticdistributionofshearstresses.Thereforetheultimatetorsionalstrengthofaplainconcretesectionwillbebetweenthevaluespredictedbythemembrane(fullyelastic)andsandheap(fullyplastic)analogies.Shearstressescausediagonal(principal)tensilestresses,whichinitiate,thefailure.Inthelightoftheforegoingapproximationsandthevariabilityofthetensilestrengthofconcrete,thesimplifieddesignequationforthedeterminationofthenominalultimatesections,proposedbyshearstressinducedbytorsioninplainconcreteACI318-71,isacceptable:wherexWy.Thevalueof3fortisorty,3,isaminimumfortheelastictheoryandamaxi-mumfortheplastictheory(seeFig.8.3andEq.8.7a).TheultimatetorsionalresistanceofcompoundsectionscanbematedbythesummationofthecontributionoftheconstituentsectionssuchasthoseinFig.8.4,theapproximationis37;37;wherexWyforeachrectangle.(8.8a)
Theprincipalstress(tensilestrength)conceptwouldsuggestthatfailurecracksshoulddevelopateachfaceofthebeamalongaspiralrunningat450tothebeamaxis.However,thisisnotpossiblebecausetheboundaryofthefailuresurfacemustformaclosedloop.Hsuhassuggestedthatbendingoccursaboutanaxisparalleltotheplanesthatisatapproximately450tothebeamaxisandofthelongfacesofarectangularbeam.Thisbendingcausescompressionbeam.Thelattertensioncrackingeventuallyandtensilestressesinthe450planeacrosstheinitiatesasurfacecrack.Assoonasflexuraloccurstheflexuralstrengthofthesectionisreduced,thecrackrapidlypropagates,andsuddenfailurefollows.Hsuobservedthissequenceoffailurewiththeaidofhigh-speedmotionpictures.Formoststructureslittleusecanbemadeofthetorsional(tensile)strengthofunreinforcedconcretemembers.TubularSectionsBecauseoftheadvantageousefficientinresistingdistributionofshearstresses,tubularsectionsaremostresistingtorsion.Theyarewidelyusedinbridgeconstruction.Figure8.7illustratesthebasicformsusedforbridgegirders.ThetorsionalpropertiesofthegirdersimproveinprogressingfromFigs.8.7ato8.7g.Fig.&7.E師icformsusedforbridgecrcs?sections』'Whenthewallthicknesshissmallrelativetotheoveralldimensionsofthesection,uniformshearstressacrossthethicknesscanbeassumed.Byconsideringthemomentsexertedaboutasuitablepointbytheshearstresses,actingoverinfinitesimalelementsofthetubesection,asinFig.8.8a,thetorqueofresistancecanbeexpressed.as(8+9時(shí)T=Jhvt(8+9時(shí)(時(shí)fo(時(shí)foTheproducthvt=v。istermedtheshearflow,.andthisisconstant;thusT T衛(wèi) orp.— r押囪 2AQhwhereAo=theareaenclosedbythecenterJineofthetubewall(shadedareainFig.8.8).Theconceptofshearflowaroundthethinwalltubeisusefulwhentheroleofreinforcementintorsionisconsidered.TheACIcode&2suggeststhattheequationrelevanttosolidsections.8.&beusedalsoforhollowsections,withthefollowingmodificationwhenthewallthicknessisnotlessthanx/lO(seeFig.8.8c):(8,10)wherex<y.Equation8.9bfollowsfromfirstprinciplesandhastheadvantageofbeingapplicabletoboththeelasticandfullyplasticstateofstress.Thetorque-twistrelationshipforhollowsectionsmaybereadilyderivedfromstrainenergyconsiderations.Byequatingtheworkdonebytheappliedtorque(externalwork)tothatoftheshearstresses(internalwork),thetorsionconstantCOfortubularsectionscanbefoundthus:internalwork=internalwork=(sumofshearstressshearstrainactingonthetubeelements)fvt ((unitlength)=-xO叭-^hdsx1J Gexterna!work=(appliedtorque)(angleoftwistperunitJengthofmember)Tx?thetwoexpressionsandusingEq.8.9b,therelationshipHencebyequatingthetwoexpressionsandusingEq.8.9b,therelationshipbetweentorqueandangleoftwistisfoundtobe
andthetorsionalstiffnessofsuchmemberistherefore(8.4a)whereC0istheequivalentpolarmomentofinertiaofthetubularsectionandisgivenby(&⑴wheresismeasuredaroundthewallcenterline.Thesameexpressionforthemorecommonformofboxsection(Fig.8.8b)becomes(8.Ila)ForuniformwallthicknessEq.8.11reducesfurtherto(8.11b)wherepistheperimetermeasuredalongthetubecenterline.Itisemphasizedthattheprecedingdiscussiononelasticandplasticbehaviorrelatestoplainconcert.andthepropositionsareapplicableonlyatlowloadintensitiesbeforecracking.Theymaybeusedforpredictingtheoneofdiagonalcracking.BEAMSWITHOUTWEBREINFORCEMENTSUBJECTTOFLEXUREANDTORSIONThefailuremechanismofbeamssubjectedtotorsionandbendingdependsonthepredominanceofoneortheother.Theratioofultimatetorquetomoment,TJ/MUisasuitableparametertomeasuretherelativemagnitudeoftheseactions.Theflexuralresistancedependsprimarilyontheamountofflexuralreinforcement.The-torsionalbehaviorofaconcretebeamwithoutwebreinforcementismoredifficulttoassessinthepresenceofflexure.
Flexuralstressesinitiatediagonalcracksinthecaseoftorsion,muchastheydointhecaseofshear.Inthepresenceofflexurethesecracksarearrestedinthecompressionzone.Forthisreasonadiagonallycrackedbeamiscapableofcarryingacertainamountortorsion.Themannerinwhichthistorsionisresistedis,atpresent,amatter,ofspeculation.Clearlythecompressionzoneofthebeamiscapableofresistingalimitedamountoftorsion,.andhorizontalreinforcementcanalsocontributetotorsionalresistancebymeansofdowelaction.Ithasbeenfound(e.g.,byMattock")thatthetorsionalresistanceofacrackedsectionisapproximatelyone-halftheultimatetorsionalstrengthoftheuncrackedsection,providedacertain-amountofbendingispresent.Thusonehalfthetorquecausingcrackingcanbesustainedaftertheformationofcracks.Thetorquethuscarriedissosmallthatitsinfluenceonflexureoncanbeignored.Thenominaltorsionalshearstress,correspondingtothislimitedtorsionisconservativelyassumedbyACI318-71.tobe40%ofacrackingstressof6^7;W丿刁N/mm2).二%斗0.4(67?;)“你psiWA/7;N/mm2)⑻⑵andthetorquesuppliedbythe.concretesectiononly,aftertheonsetofcracking,isrevealedbyEq.8.8tobe(8J3)Similarly,forcompoundsections,Eq.8.8agives(8J3a)withthelimitationsonoverhangingpartsasindicatedinFig.8.4.WhenT./M>0.5(i.e.,whentorsionissignificant),brittlefailurehasbeenobserved.Whenthebendingmomentismorepronounced,(i.e.,whenT/Mu<0.5),amoreductilefailurecanbeexpected.Thetorsionalstrengthofabeamcanbeincreasedonlywiththeadditionofwebreinforcement.Theamountofflexuralreinforcementappearstohavenoinfluenceonthetorsionalcapacityoftheconcretesection,T.InTorLbeamstheoverhangingpartoftheflangescontributetotorsional.strength.Thishasbeenverifiedonisolatedbeams.Theeffectivewidthofflanges,whenthesearepartofafloorslab,isdifficulttoassess.Whenayieldlinecandevelopalonganedgebeambecauseofnegativebendingmomentintheslab,asillustratedinFig.8.9itisunlikelythatmuchoftheflangecancontributetowardtorsionalstrength.Fig.乩dYieldlinealonganedgebeam.TORSIONANDSHEARINBEAMSWITHOUTWEBREINFORCEMENTItisevidentthatinsuperposition;theshearstressesgeneratedbytorsionandshearingforceareadditivealongonesideandsubtractivealongtheoppositesideofarectangularbeamsection.Thecriticaldiagonaltensilestressesthatensuearefurtheraffectedbyflexuraltensilestressesintheconcrete,becauseitisimpossibletoapplyshearingforceswithoutsimultaneouslyinducingflexure.Afullyr
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省蘇州市梁豐2024-2025學(xué)年初三下學(xué)期(開(kāi)學(xué))考試化學(xué)試題試卷含解析
- 山東省煙臺(tái)芝罘區(qū)六校聯(lián)考2024-2025學(xué)年初三5月份考前模擬適應(yīng)性聯(lián)合考試化學(xué)試題試卷含解析
- 沈陽(yáng)工業(yè)大學(xué)《云計(jì)算與虛擬化技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧省遼河油田第二中學(xué)2025屆高三高考信息卷(一)物理試題含解析
- 長(zhǎng)沙市重點(diǎn)中學(xué)2025年高三4月聯(lián)考?xì)v史試題試卷含解析
- 寧夏中衛(wèi)市名校2024-2025學(xué)年高中畢業(yè)班3月復(fù)習(xí)教學(xué)質(zhì)量檢測(cè)試題(二)英語(yǔ)試題含答案
- 山西省右玉縣重點(diǎn)達(dá)標(biāo)名校2024-2025學(xué)年初三5月三校聯(lián)考化學(xué)試題試卷含解析
- 上海市徐匯區(qū)2025年數(shù)學(xué)四年級(jí)第二學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析
- 山東省濱州市濱城區(qū)北城英才學(xué)校2025年三下數(shù)學(xué)期末考試試題含解析
- 短期護(hù)士雇傭合同2025年
- VTE評(píng)分量表解讀 課件2024.8
- 虛擬商業(yè)創(chuàng)新創(chuàng)業(yè)實(shí)訓(xùn)智慧樹(shù)知到答案2024年西安工業(yè)大學(xué)
- 2023年12月英語(yǔ)六級(jí)真題及答案-第3套
- 《文化學(xué)概論》第三章-文化的起源及其發(fā)展-38
- 2024年四川省成都市中考地理+生物試卷真題(含答案解析)
- 公立醫(yī)院醫(yī)療服務(wù)價(jià)格制度
- 突發(fā)環(huán)境事件應(yīng)急預(yù)案評(píng)審會(huì)匯報(bào)課件-(模板)
- JGJ+196-2010建筑施工塔式起重機(jī)安裝、使用、拆卸安全技術(shù)規(guī)程
- 跌倒不良事件分析匯報(bào)課件
- 一氧化碳檢測(cè)報(bào)警器標(biāo)準(zhǔn)裝置技術(shù)報(bào)告
- JT∕T1180.4-2018交通運(yùn)輸企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化建設(shè)基本規(guī)范第4部分:道路普貨運(yùn)輸
評(píng)論
0/150
提交評(píng)論