高考數(shù)學(xué)二輪復(fù)習(xí) 專題03 導(dǎo)數(shù)及其應(yīng)用(含解析)_第1頁
高考數(shù)學(xué)二輪復(fù)習(xí) 專題03 導(dǎo)數(shù)及其應(yīng)用(含解析)_第2頁
高考數(shù)學(xué)二輪復(fù)習(xí) 專題03 導(dǎo)數(shù)及其應(yīng)用(含解析)_第3頁
高考數(shù)學(xué)二輪復(fù)習(xí) 專題03 導(dǎo)數(shù)及其應(yīng)用(含解析)_第4頁
高考數(shù)學(xué)二輪復(fù)習(xí) 專題03 導(dǎo)數(shù)及其應(yīng)用(含解析)_第5頁
已閱讀5頁,還剩34頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題03導(dǎo)數(shù)及其應(yīng)用1.【2022年全國甲卷】當(dāng)x=1時,函數(shù)f(x)=alnx+bx取得最大值?2,則A.?1 B.?12 C.【答案】B【解析】【分析】根據(jù)題意可知f1=?2,f'1=0【詳解】因為函數(shù)fx定義域為0,+∞,所以依題可知,f1=?2,f'1=0,而f'x=ax?bx2,所以故選:B.2.【2022年全國甲卷】已知a=3132,b=A.c>b>a B.b>a>c C.a(chǎn)>b>c D.a(chǎn)>c>b【答案】A【解析】【分析】由cb=4tan14結(jié)合三角函數(shù)的性質(zhì)可得c>b【詳解】因為cb=4所以tan14>14設(shè)f(x)=cosf'(x)=?sinx+x>0,所以則f14>f(0)所以b>a,所以c>b>a,故選:A3.【2022年新高考1卷】設(shè)a=0.1e0.1,b=A.a(chǎn)<b<c B.c<b<a C.c<a<b D.a(chǎn)<c<b【答案】C【解析】【分析】構(gòu)造函數(shù)f(x)=ln(1+x)?x,導(dǎo)數(shù)判斷其單調(diào)性,由此確定【詳解】設(shè)f(x)=ln(1+x)?x(x>?1),因為當(dāng)x∈(?1,0)時,f'(x)>0,當(dāng)x∈(0,+∞所以函數(shù)f(x)=ln(1+x)?x在(0,+∞所以f(19)<f(0)=0,所以ln109所以f(?110)<f(0)=0,所以ln910故a<b,設(shè)g(x)=xex+令?(x)=ex(當(dāng)0<x<2?1時,?'當(dāng)2?1<x<1時,?'(x)>0又?(0)=0,所以當(dāng)0<x<2?1時,所以當(dāng)0<x<2?1時,g'所以g(0.1)>g(0)=0,即0.1e0.1故選:C.4.【2022年新高考1卷】(多選)已知函數(shù)f(x)=x3?x+1A.f(x)有兩個極值點 B.f(x)有三個零點C.點(0,1)是曲線y=f(x)的對稱中心 D.直線y=2x是曲線y=f(x)的切線【答案】AC【解析】【分析】利用極值點的定義可判斷A,結(jié)合f(x)的單調(diào)性、極值可判斷B,利用平移可判斷C;利用導(dǎo)數(shù)的幾何意義判斷D.【詳解】由題,f'x=3x2?1,令令f'(x)<0得所以f(x)在(?33,33所以x=±3因f(?33)=1+23所以,函數(shù)fx在?當(dāng)x≥33時,fx≥f3綜上所述,函數(shù)f(x)有一個零點,故B錯誤;令?(x)=x3?x,該函數(shù)的定義域為R則?(x)是奇函數(shù),(0,0)是?(x)的對稱中心,將?(x)的圖象向上移動一個單位得到f(x)的圖象,所以點(0,1)是曲線y=f(x)的對稱中心,故C正確;令f'x=3x2當(dāng)切點為(1,1)時,切線方程為y=2x?1,當(dāng)切點為(?1,1)時,切線方程為y=2x+3,故D錯誤.故選:AC.5.【2022年全國乙卷】已知x=x1和x=x2分別是函數(shù)f(x)=2ax?【答案】1【解析】【分析】由x1,x2分別是函數(shù)fx=2ax?ex2的極小值點和極大值點,可得x∈?∞,x1∪x2,+∞時,【詳解】解:f'因為x1,x所以函數(shù)fx在?∞,x1所以當(dāng)x∈?∞,x1∪x若a>1時,當(dāng)x<0時,2lna?a故a>1不符合題意,若0<a<1時,則方程2lna?a即方程lna?ax即函數(shù)y=lna?a∵0<a<1,∴函數(shù)y=a又∵lna<0,∴y=lna?ax的圖象由指數(shù)函數(shù)設(shè)過原點且與函數(shù)y=gx的圖象相切的直線的切點為x則切線的斜率為g'故切線方程為y?ln則有?lna?a則切線的斜率為ln2因為函數(shù)y=lna?a所以eln2a<又0<a<1,所以1e綜上所述,a的范圍為1e【點睛】本題考查了函數(shù)的極值點問題,考查了導(dǎo)數(shù)的幾何意義,考查了轉(zhuǎn)化思想及分類討論思想,有一定的難度.6.【2022年新高考1卷】若曲線y=(x+a)ex有兩條過坐標(biāo)原點的切線,則【答案】(?【解析】【分析】設(shè)出切點橫坐標(biāo)x0,利用導(dǎo)數(shù)的幾何意義求得切線方程,根據(jù)切線經(jīng)過原點得到關(guān)于x0的方程,根據(jù)此方程應(yīng)有兩個不同的實數(shù)根,求得【詳解】∵y=(x+a)ex,∴設(shè)切點為(x0,y0切線方程為:y?x∵切線過原點,∴?x整理得:x0∵切線有兩條,∴?=a2+4a>0,解得a<?4∴a的取值范圍是(?∞故答案為:(?7.【2022年新高考2卷】曲線y=ln【答案】

y=1e【解析】【分析】分x>0和x<0兩種情況,當(dāng)x>0時設(shè)切點為x0,lnx0【詳解】解:因為y=ln當(dāng)x>0時y=lnx,設(shè)切點為x0,lnx0又切線過坐標(biāo)原點,所以?lnx0=1x0當(dāng)x<0時y=ln?x,設(shè)切點為x1,ln?x又切線過坐標(biāo)原點,所以?ln?x1=1x故答案為:y=1e8.【2022年全國甲卷】已知函數(shù)f(x)=x3?x,g(x)=x2+a,曲線(1)若x1=?1,求(2)求a的取值范圍.【答案】(1)3(2)?1,+【解析】【分析】(1)先由f(x)上的切點求出切線方程,設(shè)出g(x)上的切點坐標(biāo),由斜率求出切點坐標(biāo),再由函數(shù)值求出a即可;(2)設(shè)出g(x)上的切點坐標(biāo),分別由f(x)和g(x)及切點表示出切線方程,由切線重合表示出a,構(gòu)造函數(shù),求導(dǎo)求出函數(shù)值域,即可求得a的取值范圍.(1)由題意知,f(?1)=?1?(?1)=0,f'(x)=3x2?1,f'(?1)=3?1=2即y=2x+2,設(shè)該切線與g(x)切于點x2,g(x2),g'(x)=2x,則g(2)f'(x)=3x2?1,則y=f(x)在點x設(shè)該切線與g(x)切于點x2,g(x2),g'(x)=2x則3x12令?(x)=94x4?2x3?3令?'(x)<0,解得x<?13或0<x<1,則x???00,111,+??0+0?0+?(x)↘5↗1↘?1↗則?(x)的值域為?1,+∞,故a的取值范圍為?1,+9.【2022年全國甲卷】已知函數(shù)fx(1)若fx≥0,求(2)證明:若fx有兩個零點x1,【答案】(1)(?(2)證明見的解析【解析】【分析】(1)由導(dǎo)數(shù)確定函數(shù)單調(diào)性及最值,即可得解;(2)利用分析法,轉(zhuǎn)化要證明條件為ex(1)f(x)的定義域為(0,+∞f'(x)=(令f(x)=0,得x=1當(dāng)x∈(0,1),f當(dāng)x∈(1,+∞),f若f(x)≥0,則e+1?a≥0,即所以a的取值范圍為(?(2)由題知,f(x)一個零點小于1,一個零點大于1不妨設(shè)x要證x1x因為x1,因為f(x1即證e即證e下面證明x>1時,e設(shè)g(x)=e則g=(1?設(shè)φ(x)=所以φ(x)>φ(1)=e,而所以exx所以g(x)在(1,+∞即g(x)>g(1)=0,所以e令?(x)=?所以?(x)在(1,+∞即?(x)<?(1)=0,所以lnx?綜上,exx?x【點睛】關(guān)鍵點點睛:本題是極值點偏移問題,關(guān)鍵點是通過分析法,構(gòu)造函數(shù)證明不等式?(x)=ln10.【2022年全國乙卷】已知函數(shù)f(x)=ax?1(1)當(dāng)a=0時,求f(x)的最大值;(2)若f(x)恰有一個零點,求a的取值范圍.【答案】(1)?1(2)(0,+【解析】【分析】(1)由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可得解;(2)求導(dǎo)得f'(x)=(ax?1)(x?1)x2,按照a≤0(1)當(dāng)a=0時,f(x)=?1x?當(dāng)x∈(0,1)時,f'(x)>0,當(dāng)x∈(1,+∞)時,f'所以f(x)(2)f(x)=ax?1x?(a+1)當(dāng)a≤0時,ax?1≤0,所以當(dāng)x∈(0,1)時,f'(x)>0,當(dāng)x∈(1,+∞)時,f'所以f(x)當(dāng)0<a<1時,1a>1,在(0,1),(1a,+在(1,1a)上,f又f(1)=a?1<0,當(dāng)x趨近正無窮大時,f(x)趨近于正無窮大,所以f(x)僅在(1當(dāng)a=1時,f'(x)=(x?1)2x所以f(x)有唯一零點,符合題意;當(dāng)a>1時,1a<1,在(0,1a),(1,+在(1a,1)上,f'(x)<0又f(1an)=1所以f(x)在(0,1a)所以f(x)有唯一零點,符合題意;綜上,a的取值范圍為(0,+∞【點睛】關(guān)鍵點點睛:解決本題的關(guān)鍵是利用導(dǎo)數(shù)研究函數(shù)的極值與單調(diào)性,把函數(shù)零點問題轉(zhuǎn)化為函數(shù)的單調(diào)性與極值的問題.11.【2022年全國乙卷】已知函數(shù)f(1)當(dāng)a=1時,求曲線y=fx在點0,f(2)若fx在區(qū)間?1,0,0,+【答案】(1)y=2x(2)(?【解析】【分析】(1)先算出切點,再求導(dǎo)算出斜率即可(2)求導(dǎo),對a分類討論,對x分(?1,0),(0,+∞(1)f(x)的定義域為(?1,+當(dāng)a=1時,f(x)=ln(1+x)+xex所以曲線y=f(x)在點(0,f(0))處的切線方程為y=2x(2)f(x)=f設(shè)g(x)=1°若a>0,當(dāng)x∈(?1,0),g(x)=e所以f(x)在(?1,0)上單調(diào)遞增,f(x)<f(0)=0故f(x)在(?1,0)上沒有零點,不合題意2°若?1?a?0,當(dāng)x∈(0,+∞所以g(x)在(0,+∞)上單調(diào)遞增所以g(x)>g(0)=1+a?0所以f(x)在(0,+∞)故f(x)在(0,+∞3°若(1)當(dāng)x∈(0,+∞),則g'(x)=eg(0)=1+a<0,g(1)=所以存在m∈(0,1),使得g(m)=0,即f當(dāng)x∈(0,m),f當(dāng)x∈(m,+∞所以當(dāng)x∈(0,m),f(x)<f(0)=0當(dāng)x→+所以f(x)在(m,+∞又(0,m)沒有零點,即f(x)在(0,+∞(2)當(dāng)x∈(?1,0),g(x)=設(shè)?(x)=?所以g'(x)在g所以存在n∈(?1,0),使得g當(dāng)x∈(?1,n),g當(dāng)x∈(n,0),g'又g(?1)=所以存在t∈(?1,n),使得g(t)=0,即f當(dāng)x∈(?1,t),f(x)單調(diào)遞增,當(dāng)x∈(t,0),f(x)單調(diào)遞減有x→?1,f(x)→?而f(0)=0,所以當(dāng)x∈(t,0),f(x)>0所以f(x)在(?1,t)上有唯一零點,(t,0)上無零點即f(x)在(?1,0)上有唯一零點所以a<?1,符合題意所以若f(x)在區(qū)間(?1,0),(0,+∞)各恰有一個零點,求a【點睛】方法點睛:本題的關(guān)鍵是對a的范圍進(jìn)行合理分類,否定和肯定并用,否定只需要說明一邊不滿足即可,肯定要兩方面都說明.12.【2022年新高考1卷】已知函數(shù)f(x)=ex?ax(1)求a;(2)證明:存在直線y=b,其與兩條曲線y=f(x)和y=g(x)共有三個不同的交點,并且從左到右的三個交點的橫坐標(biāo)成等差數(shù)列.【答案】(1)a=1(2)見解析【解析】【分析】(1)根據(jù)導(dǎo)數(shù)可得函數(shù)的單調(diào)性,從而可得相應(yīng)的最小值,根據(jù)最小值相等可求a.注意分類討論.(2)根據(jù)(1)可得當(dāng)b>1時,ex?x=b的解的個數(shù)、x?lnx=b的解的個數(shù)均為2,構(gòu)建新函數(shù)?(x)=ex+lnx?2x,利用導(dǎo)數(shù)可得該函數(shù)只有一個零點且可得f(x),g(x)(1)f(x)=ex?ax的定義域為R若a≤0,則f'(x)>0,此時f(x)無最小值,故g(x)=ax?lnx的定義域為(0,+∞當(dāng)x<lna時,f'(x)<0,故當(dāng)x>lna時,f'(x)>0,故故f(x)當(dāng)0<x<1a時,g'(x)<0,故當(dāng)x>1a時,g'(x)>0,故故g(x)因為f(x)=ex?ax故1?ln1a=a?aln設(shè)g(a)=a?11+a?故g(a)為(0,+∞)上的減函數(shù),而故g(a)=0的唯一解為a=1,故1?a1+a=ln綜上,a=1.(2)由(1)可得f(x)=ex?x和g(x)=x?當(dāng)b>1時,考慮ex?x=b的解的個數(shù)、設(shè)S(x)=ex?x?b當(dāng)x<0時,S'(x)<0,當(dāng)x>0時,故S(x)在(?∞,0)上為減函數(shù),在所以S(x)而S(?b)=e?b>0設(shè)u(b)=eb?2b,其中b>1故u(b)在(1,+∞)上為增函數(shù),故故S(b)>0,故S(x)=ex?x?b設(shè)T(x)=x?lnx?b,當(dāng)0<x<1時,T'(x)<0,當(dāng)x>1時,故T(x)在(0,1)上為減函數(shù),在(1,+∞所以T(x)而T(e?b)=T(x)=x?lnx?b有兩個不同的零點即當(dāng)b=1,由(1)討論可得x?lnx=b、當(dāng)b<1時,由(1)討論可得x?lnx=b、故若存在直線y=b與曲線y=f(x)、y=g(x)有三個不同的交點,則b>1.設(shè)?(x)=ex+lnx?2x設(shè)s(x)=ex?x?1,x>0故s(x)在(0,+∞)上為增函數(shù),故s(x)>s(0)=0即所以?'(x)>x+1x?1≥2?1>0而?(1)=e?2>0,故?(x)在(0,+∞)上有且只有一個零點x0當(dāng)0<x<x0時,?(x)<0即ex當(dāng)x>x0時,?(x)>0即ex因此若存在直線y=b與曲線y=f(x)、y=g(x)有三個不同的交點,故b=f(x此時ex?x=b有兩個不同的零點此時x?lnx=b有兩個不同的零點故ex1?x1=b所以x4?b=lnx4故x4?b為方程ex?x=b的解,同理又ex1?x1=b可化為故x1+b為方程x?lnx=b的解,同理所以{x1,故{x0=【點睛】思路點睛:函數(shù)的最值問題,往往需要利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,此時注意對參數(shù)的分類討論,而不同方程的根的性質(zhì),注意利用方程的特征找到兩類根之間的關(guān)系.13.【2022年新高考2卷】已知函數(shù)f(x)=xe(1)當(dāng)a=1時,討論f(x)的單調(diào)性;(2)當(dāng)x>0時,f(x)<?1,求a的取值范圍;(3)設(shè)n∈N?,證明:【答案】(1)f(x)的減區(qū)間為(?∞,0),增區(qū)間為(2)a≤(3)見解析【解析】【分析】(1)求出f'(x),討論其符號后可得(2)設(shè)?(x)=xeax?ex+1,求出?″(x),先討論a>1(3)由(2)可得2lnt<t?1t對任意的t>1恒成立,從而可得(1)當(dāng)a=1時,f(x)=(x?1)ex,則當(dāng)x<0時,f'(x)<0,當(dāng)x>0時,故f(x)的減區(qū)間為(?∞,0),增區(qū)間為(2)設(shè)?(x)=xeax?又?'(x)=(1+ax)e則g'若a>12,則因為g'故存在x0∈(0,+∞),使得故g(x)在(0,x0)故?(x)在(0,x0)若0<a≤12,則下證:對任意x>0,總有l(wèi)n(1+x)<x證明:設(shè)S(x)=ln(1+x)?x,故故S(x)在(0,+∞)上為減函數(shù),故S(x)<S(0)=0即由上述不等式有eax+故?'(x)≤0總成立,即?(x)在所以?(x)<?(0)=?1.當(dāng)a≤0時,有?'(x)=所以?(x)在(0,+∞)上為減函數(shù),所以綜上,a≤1(3)取a=12,則?x>0,總有令t=e12故2tlnt<t2?1所以對任意的n∈N?,有整理得到:ln(n+1)?故1=ln故不等式成立.【點睛】思路點睛:函數(shù)參數(shù)的不等式的恒成立問題,應(yīng)該利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,注意結(jié)合端點處導(dǎo)數(shù)的符號合理分類討論,導(dǎo)數(shù)背景下數(shù)列不等式的證明,應(yīng)根據(jù)已有的函數(shù)不等式合理構(gòu)建數(shù)列不等式.14.【2022年北京】已知函數(shù)f(x)=e(1)求曲線y=f(x)在點(0,f(0))處的切線方程;(2)設(shè)g(x)=f'(x),討論函數(shù)g(x)(3)證明:對任意的s,t∈(0,+∞),有【答案】(1)y=x(2)g(x)在[0,+∞(3)證明見解析【解析】【分析】(1)先求出切點坐標(biāo),在由導(dǎo)數(shù)求得切線斜率,即得切線方程;(2)在求一次導(dǎo)數(shù)無法判斷的情況下,構(gòu)造新的函數(shù),再求一次導(dǎo)數(shù),問題即得解;(3)令m(x)=f(x+t)?f(x),(x,t>0),即證m(x)>m(0),由第二問結(jié)論可知m(x)在[0,+∞)上單調(diào)遞增,即得證.(1)解:因為f(x)=exln即切點坐標(biāo)為(0,0),又f'∴切線斜率k=∴切線方程為:y=x(2)解:因為g(x)=f'(x)=所以g'令?(x)=ln則?'∴?(x)在[0,+∞∴?(x)≥?(0)=1>0∴g'(x)>0在∴g(x)在[0,+∞(3)解:原不等式等價于f(s+t)?f(s)>f(t)?f(0),令m(x)=f(x+t)?f(x),(x,t>0),即證m(x)>m(0),∵m(x)=f(x+t)?f(x)=em'由(2)知g(x)=f'(x)=∴g(x+t)>g(x),∴m∴m(x)在(0,+∞)上單調(diào)遞增,又因為∴m(x)>m(0),所以命題得證.15.【2022年浙江】設(shè)函數(shù)f(x)=e(1)求f(x)的單調(diào)區(qū)間;(2)已知a,b∈R,曲線y=f(x)上不同的三點x1,fx(ⅰ)若a>e,則0<b?f(a)<(ⅱ)若0<a<e,x(注:e=2.71828?【答案】(1)f(x)的減區(qū)間為(0,e2)(2)(ⅰ)見解析;(ⅱ)見解析.【解析】【分析】(1)求出函數(shù)的導(dǎo)數(shù),討論其符號后可得函數(shù)的單調(diào)性.(2)(ⅰ)由題設(shè)構(gòu)造關(guān)于切點橫坐標(biāo)的方程,根據(jù)方程有3個不同的解可證明不等式成立,(ⅱ)k=x3x1,m=a(1)f'當(dāng)0<x<e2,f'(x)<0;當(dāng)故f(x)的減區(qū)間為(0,e2),f(x)(2)(ⅰ)因為過(a,b)有三條不同的切線,設(shè)切點為(x故f(x故方程f(x)?b=f該方程可整理為(1設(shè)g(x)=(1則g=?1當(dāng)0<x<e或x>a時,g'(x)<0;當(dāng)e故g(x)在(0,e),(a,+∞因為g(x)有3個不同的零點,故g(e)<0且故(1e?整理得到:b<a2e+1此時b?f(a)?1設(shè)u(a)=32?故u(a)為(e,+∞故0<b?f(a)<1(ⅱ)當(dāng)0<a<e時,同(ⅰ故g(x)在(0,a),(e,+∞不妨設(shè)x1<x因為g(x)有3個不同的零點,故g(a)<0且g(e故(1e?整理得到:a2e因為x1<x又g(x)=1?a+設(shè)t=ex,ae?a+ee記t則t1,t設(shè)k=t1t要證:2e+e即證:13?m即證:(t即證:t1而?(m+1)t1+故lnt故t1故即證:?2即證:(即證:(k+1)ln記φ(k)=(k+1)lnk設(shè)u(k)=k?1k?2lnk故φ(k)在(1,+∞)上為增函數(shù),故所以(k+1)ln記ω(m)=ln則ω'所以ω(m)在(0,1)為增函數(shù),故ω(m)<ω(1)=0,故lnm+(m?1)(m?13)(m故原不等式得證:【點睛】思路點睛:導(dǎo)數(shù)背景下的切線條數(shù)問題,一般轉(zhuǎn)化為關(guān)于切點方程的解的個數(shù)問題,而復(fù)雜方程的零點性質(zhì)的討論,應(yīng)該根據(jù)零點的性質(zhì)合理轉(zhuǎn)化需求證的不等式,常用的方法有比值代換等.1.(2022·全國·南京外國語學(xué)校模擬預(yù)測)設(shè)函數(shù)SKIPIF1<0在R上存在導(dǎo)數(shù)SKIPIF1<0,對于任意的實數(shù)SKIPIF1<0,有SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】構(gòu)造函數(shù)SKIPIF1<0,得到SKIPIF1<0為奇函數(shù),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,分SKIPIF1<0和SKIPIF1<0兩種情況,利用奇偶性和單調(diào)性解不等式,求出實數(shù)SKIPIF1<0的取值范圍.【詳解】∵SKIPIF1<0,∴SKIPIF1<0.令SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.又∵SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0為奇函數(shù),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.∵SKIPIF1<0,∴SKIPIF1<0.當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0即SKIPIF1<0,由于SKIPIF1<0在SKIPIF1<0上遞減,則SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0.當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0.由SKIPIF1<0在SKIPIF1<0上遞減,則SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0.綜上所述,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D.【點睛】構(gòu)造函數(shù),研究出構(gòu)造的函數(shù)的奇偶性和單調(diào)性,進(jìn)而解不等式,是經(jīng)常考查的一類題目,結(jié)合題干信息,構(gòu)造出函數(shù)是關(guān)鍵.2.(2022·內(nèi)蒙古·海拉爾第二中學(xué)模擬預(yù)測(理))已知函數(shù)SKIPIF1<0,若對任意實數(shù)SKIPIF1<0,不等式SKIPIF1<0總成立,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】將所求不等式變形為SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,可知該函數(shù)在SKIPIF1<0上為增函數(shù),由此可得出SKIPIF1<0,其中SKIPIF1<0,利用導(dǎo)數(shù)求出SKIPIF1<0的最大值,即可求得實數(shù)SKIPIF1<0的取值范圍.【詳解】當(dāng)SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),由SKIPIF1<0可得SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,其中SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,所以,SKIPIF1<0,SKIPIF1<0.故選:D.【點睛】關(guān)鍵點點睛:本題考查利用函數(shù)不等式恒成立求參數(shù),解題的關(guān)鍵就是將所求不等式進(jìn)行轉(zhuǎn)化,通過不等式的結(jié)構(gòu)構(gòu)造新函數(shù),結(jié)合新函數(shù)的單調(diào)性來求解.3.(2022·江蘇無錫·模擬預(yù)測)已知SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)給定條件,構(gòu)造函數(shù)SKIPIF1<0,利用函數(shù)的單調(diào)性比較大小作答.【詳解】令函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,求導(dǎo)得:SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0.故選:C【點睛】思路點睛:某些數(shù)或式大小比較問題,探討給定數(shù)或式的內(nèi)在聯(lián)系,構(gòu)造函數(shù),分析并運用函數(shù)的單調(diào)性求解.4.(2022·福建·三明一中模擬預(yù)測)己知e為自然對數(shù)的底數(shù),a,b均為大于1的實數(shù),若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】由題意化簡得到SKIPIF1<0,設(shè)SKIPIF1<0,得到SKIPIF1<0,結(jié)合題意和函數(shù)SKIPIF1<0的單調(diào)性,即可求解.【詳解】由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,可得SKIPIF1<0,因為SKIPIF1<0,可得SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,可得函數(shù)SKIPIF1<0在SKIPIF1<0為單調(diào)遞增函數(shù),所以SKIPIF1<0,即SKIPIF1<0.故選:B.5.(2022·河南·開封市東信學(xué)校模擬預(yù)測(文))已知函數(shù)SKIPIF1<0,則曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)導(dǎo)數(shù)的幾何意義及點斜式方程即可求解.【詳解】∵SKIPIF1<0,∴SKIPIF1<0.又SKIPIF1<0,切點為SKIPIF1<0所以曲線SKIPIF1<0在點SKIPIF1<0處的切線的斜率為SKIPIF1<0,所以曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.故選:B.6.(2022·湖北·模擬預(yù)測)若過點SKIPIF1<0可作曲線SKIPIF1<0三條切線,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】設(shè)切點為SKIPIF1<0,根據(jù)導(dǎo)數(shù)的幾何意義寫出切線的方程,代入點SKIPIF1<0,轉(zhuǎn)化為方程有3個根,構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)可知函數(shù)的極值,根據(jù)題意列出不等式組求解即可.【詳解】設(shè)切點為SKIPIF1<0,由SKIPIF1<0,故切線方程為SKIPIF1<0,因為SKIPIF1<0在切線上,所以代入切線方程得SKIPIF1<0,則關(guān)于t的方程有三個不同的實數(shù)根,令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,所以當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0為增函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0為減函數(shù),且SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,所以只需SKIPIF1<0,解得SKIPIF1<0故選:A7.(2022·全國·模擬預(yù)測(理))若關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個不相等的實數(shù)根,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】首先判斷SKIPIF1<0不是方程的根,再方程兩邊同除以SKIPIF1<0,即可得到SKIPIF1<0,令SKIPIF1<0,利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,即可得到函數(shù)的圖象,令SKIPIF1<0,設(shè)方程SKIPIF1<0的兩根分別為SKIPIF1<0、SKIPIF1<0,對SKIPIF1<0分類討論,結(jié)合函數(shù)圖象即可得解;【詳解】解:當(dāng)SKIPIF1<0時等式顯然不成立,故SKIPIF1<0不是方程的根,當(dāng)SKIPIF1<0時,將SKIPIF1<0的兩邊同除以SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0和SKIPIF1<0時SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,函數(shù)SKIPIF1<0的圖象如下所示:令SKIPIF1<0,設(shè)方程SKIPIF1<0的兩根分別為SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,①當(dāng)SKIPIF1<0時,方程無解,舍去;②當(dāng)SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,由圖可得SKIPIF1<0有且僅有一個解,故舍去,若SKIPIF1<0,則SKIPIF1<0,由圖可得SKIPIF1<0有且僅有一個解,故舍去,③當(dāng)SKIPIF1<0時,SKIPIF1<0或SKIPIF1<0,若SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0由圖可得SKIPIF1<0與SKIPIF1<0各有一個解,符合題意,若SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,可設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由圖可得SKIPIF1<0無解,SKIPIF1<0有兩個解,符合題意,綜上可得SKIPIF1<0的取值范圍為SKIPIF1<0;故選:A8.(2022·河南安陽·模擬預(yù)測(理))已知函數(shù)SKIPIF1<0,若SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0處取得最大值,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)題意SKIPIF1<0當(dāng)SKIPIF1<0時恒成立,整理得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0圖像的下方,結(jié)合圖像分析處理.【詳解】根據(jù)題意得SKIPIF1<0當(dāng)SKIPIF1<0時恒成立則SKIPIF1<0,即SKIPIF1<0∴當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0圖像的下方SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0故選:B.9.(2022·河南開封·模擬預(yù)測(理))若關(guān)于x的不等式SKIPIF1<0對SKIPIF1<0恒成立,則實數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】由題設(shè)有SKIPIF1<0,構(gòu)造SKIPIF1<0,利用導(dǎo)數(shù)研究其單調(diào)性及值域,將問題轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上恒成立,再構(gòu)造SKIPIF1<0結(jié)合導(dǎo)數(shù)求參數(shù)范圍.【詳解】由題設(shè)可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,由SKIPIF1<0,在SKIPIF1<0上SKIPIF1<0;在SKIPIF1<0上SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上遞增;在SKIPIF1<0上遞減,且SKIPIF1<0,在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0上SKIPIF1<0,而SKIPIF1<0,所以,只需SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上遞增,故SKIPIF1<0.故a的取值范圍為SKIPIF1<0.故選:B【點睛】關(guān)鍵點點睛:不等式化為SKIPIF1<0,構(gòu)造SKIPIF1<0研究單調(diào)性,進(jìn)一步將問題轉(zhuǎn)化為研究SKIPIF1<0在SKIPIF1<0上恒成立.10.(2022·湖北·黃岡中學(xué)模擬預(yù)測)已知a,b為正實數(shù),直線SKIPIF1<0與曲線SKIPIF1<0相切,則SKIPIF1<0的最小值為(

)A.8 B.9 C.10 D.13【答案】B【解析】【分析】設(shè)切點為SKIPIF1<0,求函數(shù)的導(dǎo)數(shù),由已知切線的方程,可得切線的斜率,求得切點的坐標(biāo),可得SKIPIF1<0,再由乘1法結(jié)合基本不等式,即可得到所求最小值.【詳解】設(shè)切點為SKIPIF1<0,SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,由切線的方程SKIPIF1<0可得切線的斜率為1,令SKIPIF1<0,則SKIPIF1<0,故切點為SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0、SKIPIF1<0為正實數(shù),則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0取得最小值9,故選:B11.(2022·河南·平頂山市第一高級中學(xué)模擬預(yù)測(理))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0有兩個零點,求實數(shù)a的取值范圍.【答案】(1)答案見解析;(2)SKIPIF1<0.【解析】【分析】(1)對函數(shù)進(jìn)行求導(dǎo),分為SKIPIF1<0和SKIPIF1<0兩種情形,根據(jù)導(dǎo)數(shù)與0的關(guān)系可得單調(diào)性;(2)函數(shù)有兩個零點即SKIPIF1<0有兩個零點,根據(jù)(1)中的單調(diào)性結(jié)合零點存在定理即可得結(jié)果.(1)由題意知,SKIPIF1<0,SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;若SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)因為SKIPIF1<0,所以SKIPIF1<0有兩個零點,即SKIPIF1<0有兩個零點.若SKIPIF1<0,由(1)知,SKIPIF1<0至多有一個零點.若SKIPIF1<0,由(1)知,當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值,最小值為SKIPIF1<0.①當(dāng)SKIPIF1<0時,由于SKIPIF1<0,故SKIPIF1<0只有一個零點:②當(dāng)SKIPIF1<0時,由于SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0沒有零點;③當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0.又SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上有一個零點.存在SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0,因此SKIPIF1<0在SKIPIF1<0上有一個零點.綜上,實數(shù)a的取值范圍為SKIPIF1<0.12.(2022·山東·德州市教育科學(xué)研究院三模)已知函數(shù)SKIPIF1<0,曲線SKIPIF1<0在SKIPIF1<0處的切線與直線SKIPIF1<0垂直.(1)設(shè)SKIPIF1<0,求SKIPIF1<0的單調(diào)區(qū)間;(2)當(dāng)SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)單調(diào)增區(qū)間為SKIPIF1<0,單調(diào)減區(qū)間為SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【解析】【分析】(1)根據(jù)題意結(jié)合導(dǎo)數(shù)的幾何意義可得SKIPIF1<0,則SKIPIF1<0,對SKIPIF1<0求導(dǎo),利用導(dǎo)數(shù)判斷單調(diào)性,注意函數(shù)的定義域;(2)整理得SKIPIF1<0,對SKIPIF1<0求導(dǎo),分類討論理解處理.(1)∵SKIPIF1<0曲線SKIPIF1<0在SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0的定義域為SKIPIF1<0則SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0,單調(diào)減區(qū)間為SKIPIF1<0,SKIPIF1<0(2)當(dāng)SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0SKIPIF1<0構(gòu)建SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0,由SKIPIF1<0當(dāng)SKIPIF1<0時恒成立SKIPIF1<0在SKIPIF1<0上單調(diào)遞減且SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0∴當(dāng)SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0.當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞增且SKIPIF1<0∴當(dāng)SKIPIF1<0時,SKIPIF1<0,可得SKIPIF1<0,與題設(shè)矛盾.當(dāng)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞增且SKIPIF1<0∴當(dāng)SKIPIF1<0時,SKIPIF1<0,可得SKIPIF1<0,與題設(shè)矛盾.綜上所述:SKIPIF1<0的取值范圍為SKIPIF1<0.13.(2022·四川省瀘縣第二中學(xué)模擬預(yù)測(理))已知函數(shù)SKIPIF1<0(e為自然對數(shù)的底數(shù))有兩個零點.(1)若SKIPIF1<0,求SKIPIF1<0在SKIPIF1<0處的切線方程;(2)若SKIPIF1<0的兩個零點分別為SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【解析】【分析】(1)根據(jù)導(dǎo)數(shù)的幾何意義切線的斜率為SKIPIF1<0,利用點斜式求切線方程;(2)分析可得對SKIPIF1<0的零點即SKIPIF1<0的零點,對SKIPIF1<0分析可得SKIPIF1<0,利用零點整理可得SKIPIF1<0,構(gòu)建函數(shù)利用導(dǎo)數(shù)證明.(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以切點坐標(biāo)為SKIPIF1<0,切線的斜率為SKIPIF1<0.所以切線方程為SKIPIF1<0,即SKIPIF1<0(2)由已知得SKIPIF1<0有兩個不等的正實跟.所以方程SKIPIF1<0有兩個不等的正實根,即SKIPIF1<0有兩個不等的正實根,SKIPIF1<0①要證SKIPIF1<0,只需證SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,所以只需證SKIPIF1<0,由①得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,消去a得SKIPIF1<0,只需證SKIPIF1<0,設(shè)SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,即證SKIPIF1<0構(gòu)建SKIPIF1<0則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,即當(dāng)SKIPIF1<0時,SKIPIF1<0成立,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,證畢.【點睛】利用同構(gòu)處理可得SKIPIF1<0,結(jié)合零點代換整理可得SKIPIF1<0.14.(2022·河南安陽·模擬預(yù)測(文))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程;(2)對于SKIPIF1<0,不等式SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)求出SKIPIF1<0、SKIPIF1<0的值,結(jié)合點斜式可得出所求切線的方程;(2)由參變量分離法可得SKIPIF1<0,利用導(dǎo)數(shù)求出函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值,即可得出實數(shù)SKIPIF1<0的取值范圍.(1)解:當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,此時,函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0.(2)解:SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,其中SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),因為SKIPIF1<0,SKIPIF1<0,所以,存在SKIPIF1<0使得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),因為SKIPIF1<0,所以,SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞增,所以,SKIPIF1<0,SKIPIF1<0.【點睛】結(jié)論點睛:利用參變量分離法求解函數(shù)不等式恒(能)成立,可根據(jù)以下原則進(jìn)行求解:(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0;(4)SKIPIF1<0,SKIPIF1<0.15.(2022·青?!ご笸ɑ刈逋磷遄灾慰h教學(xué)研究室三模(文))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性;(2)已知SKIPIF1<0,SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論