版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省衡陽二十六中2024屆數(shù)學高一上期末預(yù)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.三棱錐的外接球為球,球的直徑是,且,都是邊長為1的等邊三角形,則三棱錐的體積是A. B.C. D.2.要得到函數(shù)f(x)=cos(2x-)的圖象,只需將函數(shù)g(x)=cos2x的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移單位長度 D.向右平移個單位長度3.如圖,在正方體中,異面直線與所成的角為()A.90° B.60°C.45° D.30°4.“四邊形是菱形”是“四邊形是平行四邊形”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.某地一年之內(nèi)12個月的降水量從小到大分別為:46,48,51,53,53,56,56,56,58,64,66,71,則該地區(qū)的月降水量20%分位數(shù)和75%分位數(shù)為()A.51,58 B.51,61C.52,58 D.52,616.函數(shù)的一個零點所在的區(qū)間是()A. B.C. D.7.設(shè)函數(shù)的定義域為,若存在,使得成立,則稱是函數(shù)的一個不動點,下列函數(shù)存在不動點的是()A. B.C. D.8.已知集合A=,B=,則A.AB= B.ABC.AB D.AB=R9.由直線上的點向圓作切線,則切線長的最小值為()A.1 B.C. D.310.關(guān)于的一元二次不等式的解集為()A.或 B.C.或 D.二、填空題:本大題共6小題,每小題5分,共30分。11.兩個球的體積之比為8:27,則這兩個球的表面積之比為________.12.若f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=,若方程f(x)=kx恰有3個不同的根,則實數(shù)k的取值范圍是______13.已知,,,則___________.14.將函數(shù)的圖象先向右平移個單位長度,得到函數(shù)________________的圖象,再把圖象上各點橫坐標縮短到原來的(縱坐標不變),得到函數(shù)________________的圖象15.計算:________.16.在區(qū)間上隨機取一個實數(shù),則事件發(fā)生的概率為_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,四棱錐中,底面為矩形,平面,,點為的中點()求證:平面()求證:平面平面18.已知函數(shù).(1)求的對稱中心的坐標;(2)若,,求的值.19.已知向量,函數(shù)圖象相鄰兩條對稱軸之間的距離為.(1)求的解析式;(2)若且,求的值.20.如圖,在四棱錐中,平面,,為棱上一點.(1)設(shè)為與的交點,若,求證:平面;(2)若,求證:21.如圖,在正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點(Ⅰ)求證:平面AB1D1∥平面EFG;(Ⅱ)A1C⊥平面EFG
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】試題分析:取BC中點M,則有,所以三棱錐的體積是,選B.考點:三棱錐體積【思想點睛】空間幾何體體積問題的常見類型及解題策略(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進行求解(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉(zhuǎn)換法、分割法、補形法等方法進行求解(3)若以三視圖的形式給出幾何體,則應(yīng)先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解2、D【解題分析】利用函數(shù)的圖象變換規(guī)律即可得解.【題目詳解】解:,只需將函數(shù)圖象向右平移個單位長度即可故選.【題目點撥】本題主要考查函數(shù)圖象變換規(guī)律,屬于基礎(chǔ)題3、B【解題分析】連接,可證明,然后可得即為異面直線與所成的角,然后可求出答案.【題目詳解】連接,因為是正方體,所以和平行且相等所以四邊形是平行四邊形,所以,所以為異面直線與所成的角.因為是等邊三角形,所以故選:B4、A【解題分析】由菱形和平行四邊形的定義可判斷.【題目詳解】解:四邊形是菱形則四邊形是平行四邊形,反之,若四邊形是平行四邊形則四邊形不一定是菱形,所以“四邊形是菱形”是“四邊形是平行四邊形”充分不必要條件.故選:A.5、B【解題分析】先把每月的降水量從小到大排列,再根據(jù)分位數(shù)的定義求解.【題目詳解】把每月的降水量從小到大排列為:46,48,51,53,53,56,56,56,58,64,66,71,,所以該地區(qū)月降水量的分位數(shù)為;所以該地區(qū)的月降水量的分位數(shù)為.故選:B6、B【解題分析】先求出根據(jù)零點存在性定理得解.【題目詳解】由題得,,所以所以函數(shù)一個零點所在的區(qū)間是.故選B【題目點撥】本題主要考查零點存在性定理,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.7、D【解題分析】把選項中不同的代入,去判斷方程是否有解,來驗證函數(shù)是否存在不動點即可.【題目詳解】選項A:若,則,即,方程無解.故函數(shù)不存在不動點;選項B:若,則,即,方程無解.故函數(shù)不存在不動點;選項C:若,則,即或,兩種情況均無解.故函數(shù)不存在不動點;選項D:若,則,即設(shè),則,則函數(shù)在上存在零點.即方程有解.函數(shù)存在不動點.故選:D8、A【解題分析】由得,所以,選A點睛:對于集合的交、并、補運算問題,應(yīng)先把集合化簡再計算,常常借助數(shù)軸或韋恩圖處理9、B【解題分析】先求圓心到直線的距離,此時切線長最小,由勾股定理不難求解切線長的最小值【題目詳解】切線長的最小值是當直線上的點與圓心距離最小時取得,圓心到直線的距離為,圓的半徑為1,故切線長的最小值為,故選:B【題目點撥】本題考查圓的切線方程,點到直線的距離,是基礎(chǔ)題10、A【解題分析】根據(jù)一元二次不等式的解法,直接求解,即可得出結(jié)果.【題目詳解】由得,解得或.即原不等式的解集為或.故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】設(shè)兩球半徑分別為,由可得,所以.即兩球的表面積之比為考點:球的表面積,體積公式.12、[-,-)∪(,]【解題分析】利用周期與對稱性得出f(x)的函數(shù)圖象,根據(jù)交點個數(shù)列出不等式得出k的范圍【題目詳解】∵當x>2時,f(x)=f(x-1),∴f(x)在(1,+∞)上是周期為1的函數(shù),作出y=f(x)的函數(shù)圖象如下:∵方程f(x)=kx恰有3個不同的根,∴y=f(x)與y=kx有三個交點,若k>0,則若k<0,由對稱性可知.故答案為[-,-)∪(,].【題目點撥】本題考查了函數(shù)零點與函數(shù)圖象的關(guān)系,函數(shù)周期與奇偶性的應(yīng)用,方程根的問題常轉(zhuǎn)化為函數(shù)圖象的交點問題,屬于中檔題13、【解題分析】由已知條件結(jié)合所給角的范圍求出、,再將展開即可求解【題目詳解】因為,所以,又因為,所以,所以,因為,,所以,因為,所以,所以,故答案為:.【題目點撥】關(guān)鍵點點睛:本題解題的關(guān)鍵點是由已知角的三角函數(shù)值的符號確定角的范圍進而可求角的正弦或余弦,將所求的角用已知角表示即.14、①.②.【解題分析】根據(jù)三角函數(shù)的圖象變換可得變換后函數(shù)的解析式.【題目詳解】由三角函數(shù)的圖象變換可知,函數(shù)的圖象先向右平移可得,再把圖象上各點橫坐標縮短到原來的(縱坐標不變)可得,故答案為:;15、【解題分析】由,利用正弦的和角公式求解即可【題目詳解】原式,故答案為:【題目點撥】本題考查正弦的和角公式的應(yīng)用,考查三角函數(shù)的化簡問題16、【解題分析】由得:,∵在區(qū)間上隨機取實數(shù),每個數(shù)被取到的可能性相等,∴事件發(fā)生的概率為,故答案為考點:幾何概型三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解題分析】(1)連接交于,連接.利用幾何關(guān)系可證得,結(jié)合線面平行的判斷定理則有直線平面(2)利用線面垂直的定義有,結(jié)合可證得平面,則,由幾何關(guān)系有,則平面,利用面面垂直的判斷定理即可證得平面平面試題解析:()連接交于,連接因為矩形的對角線互相平分,所以在矩形中,是中點,所以在中,是中位線,所以,因為平面,平面,所以平面()因為平面,平面,所以;在矩形中有,又,所以平面,因為平面,所以;由已知,三角形是等腰直角三角形,是斜邊的中點,所以,因為,所以平面,因為平面,所以平面平面18、(1),;(2).【解題分析】(1)利用輔助角公式及降冪公式將函數(shù)化為,再根據(jù)正弦函數(shù)的對稱中心即可得出答案;(2)由,求得,再利用兩角差的余弦公式即可得出答案.【題目詳解】解:(1)由,,得,,即的對稱中心的坐標為,.(2)由(1)知,令,則,所以,,則.19、(1);(2).【解題分析】(1)利用數(shù)量積及三角恒等變換知識化簡得;(2)由,可得,進而得到,再利用兩角和余弦公式即可得到結(jié)果.試題解析:(1),,即(2),20、(1)見解析;(2)見解析.【解題分析】(1)只需證得,即可證得平面;(2)因為平面,平面,所以,即可證得平面,從而得證.試題解析:(1)在與中,因為,所以,又因為,所以在中,有,則.又因為平面,平面,所以平面.(2)因為平面,平面,所以.又因為,平面,平面,,所以平面,平面,所以21、(Ⅰ)見解析;(Ⅱ)見解析.【解題分析】(Ⅰ)連接,推導出四邊形是平行四邊形,從而.再證出,.從而平面,同理平面,由此能證明平面平面(Ⅱ)推導出,,從而平面,,同理,由此能證明平面AB1D1,從而平面【題目詳解】(Ⅰ)連接BC1,∵正方體ABCD-A1B1C1D1中,AB∥C1D1,AB=C1D1,∴四邊形ABC1D1是平行四邊形,∴AD1∥BC1.又∵E,G分別是BC,CC1的中點,∴EG∥BC1,∴EG∥AD1.又∵EG?平面AB1D1,AD1?平面AB1D1,∴EG∥平面AB1D1.同理EF∥平面AB1D1,且EG∩EF=E,EG?平面EFG,EF?平面EFG,∴平面AB1D1∥平面EFG.
(Ⅱ)∵AB1D1正方體ABCD-A1B1C1D1中,AB1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版工業(yè)地皮購置與交易全程稅務(wù)籌劃合同3篇
- 二零二五年教育培訓機構(gòu)兼職教師雇傭協(xié)議書3篇
- 蘇州工業(yè)園區(qū)服務(wù)外包職業(yè)學院《電液控制工程》2023-2024學年第一學期期末試卷
- 二零二五版生態(tài)環(huán)保型建筑材料銷售合同3篇
- 二零二五年度定制化餐盒包裝解決方案合同3篇
- 2025年度高新技術(shù)企業(yè)研發(fā)項目財務(wù)擔保合同會計處理細則3篇
- 2024版茶樓活動策劃合同2篇
- 二零二五年服裝店導購員培訓與激勵合同范本3篇
- 山西鐵道職業(yè)技術(shù)學院《矯正社會工作》2023-2024學年第一學期期末試卷
- 廈門海洋職業(yè)技術(shù)學院《創(chuàng)意表現(xiàn)圖案》2023-2024學年第一學期期末試卷
- 公路工程施工現(xiàn)場安全檢查手冊
- 公司組織架構(gòu)圖(可編輯模版)
- 1汽輪機跳閘事故演練
- 陜西省銅川市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 禮品(禮金)上交登記臺賬
- 北師大版七年級數(shù)學上冊教案(全冊完整版)教學設(shè)計含教學反思
- 2023高中物理步步高大一輪 第五章 第1講 萬有引力定律及應(yīng)用
- 青少年軟件編程(Scratch)練習題及答案
- 浙江省公務(wù)員考試面試真題答案及解析精選
- 系統(tǒng)性紅斑狼瘡-第九版內(nèi)科學
- 全統(tǒng)定額工程量計算規(guī)則1994
評論
0/150
提交評論