google從永慧航空航天模式識(shí)別與智能系統(tǒng)_第1頁(yè)
google從永慧航空航天模式識(shí)別與智能系統(tǒng)_第2頁(yè)
google從永慧航空航天模式識(shí)別與智能系統(tǒng)_第3頁(yè)
google從永慧航空航天模式識(shí)別與智能系統(tǒng)_第4頁(yè)
google從永慧航空航天模式識(shí)別與智能系統(tǒng)_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

準(zhǔn)確率達(dá)80%以上?;谏疃葘W(xué)習(xí)的手寫(xiě)識(shí)別研究三星通信研究院實(shí)習(xí) 模型實(shí)現(xiàn)詞匯聚類和語(yǔ)言模型的建立,并進(jìn)行優(yōu)化。英語(yǔ)準(zhǔn)確率達(dá)90%以上,歐洲語(yǔ)言準(zhǔn)確率平均達(dá)YonghuiCong,ZengchangQin,JingYuandTaoWan.Cross-ModalInformationRetrievalACaseStudyonChineseWikipedia.InInternationalConferenceonAdvancedDataMiningandApplications2012:15-26.EIJingYu,YonghuiCongZengchangQinandTaoWan.Cross-ModalTopicCorrelationsforMultimediaRetrieval.InInternationalConferenceonPatternRecognition,2012:246-249.(EI檢索,已發(fā)表),TopicCorrelationModelforCross-ModalMultimediaInformationRetrievalPatternAnalysisandApplications(SCI檢索,在審,第三作者)(NMOE院校級(jí)獎(jiǎng)項(xiàng)A類,北航專業(yè)二等獎(jiǎng)學(xué)Yonghui TEL: 2012.9-BeihangUniversity,Master,MachineLearning,Intelligentcomputingandmachinelearning2008.9-Familiarwithalgorithmsaboutcomputervision,andimageprocessing,includingcontent-basedimageretrieval,cross-modalinformationretrievalandimagefeatureextraction.Ihavealgorithmdevelopmentexperiencesondesigningpracticalproject.Familiarwithnaturallanguageprocessingalgorithmssuchastextmodeling,semanticunderstandinganalysis,syntacticstructure,topicmodelandlanguagemodel.Familiarwithbasicalgorithmsondataminingandmachinelearning,includingnaiveBayesclassifier,SVM,Adaboost,PCA,K-meansetc.Ihavemathematicsfoundationsonstatistics,probabilitytheory,matrixtheoryandsoon.FamiliarwithC/C++,Matlab,Python,OpenCVandLinuxdevelopmentenvironment.,understandingPerl,ShellandVisiblecomponentsDetectionofUrineSedimentInternshipinSiemensCTDescription:visiblecomponentsDetectionofUrineSediment.Mainlyresponsibleforresearchandanalysisonfeatureextractionandclassificationalgorithmsforcastcells.SIFT,LBP,HOGfeaturesandSVM,Adaboostclassifiersareusedintheproject.Ihavecompletedavalidclassificationoncastcells,theaccuracyrategetsupto80%.Matlab,PythonandOpenCVaremainlyused.HandwritingRecognitionBeijingSamsungTechnology Description:HandwritingRecognition.MainlyresponsiblefortrainingandoptimizationoflanguageUsingthen-gramandn-classalgorithmforwordclusteringandtraininglanguagemodel.ImprovingtheaccuracyofhandwritingrecognitionbymodifyingtheclusteringalgorithmandcombiningHTKandacousticmodel.OptimizationthelanguagemodelwithHLRescorewhichimprovestheresultby20%.C++,pythonaremainlyused.Cross-modalinformationretrievalbasedonprobability Description:Implementingcross-modalinformationretrievalviaaninputmediaform(suchasimages),toretrieveotherformsofmedia(suchastext)whichdescribesthesamecontent.IwasprimarilyresponsiblefortheexperimentsontheEnglishdatabase.IestablishedaChinesedatabasewithimagesandtexts,extractedimagefeaturesandtrainedtopicmodelbasedonwordsandcharactersrespectively.SIFTfeature,LDAandSVMaremainlyusedintheproject.Wehavebuildanovelprobabilitymodelbasedonclassinformation.ThisisthefirstChinesecaserealizingcross-modalinformationretrieval,andgettingabetterretrievalperformance.ThemainprogramlanguagesusedareMatlabandPython.TopicModelingonChinese 2013Description:AsChinesedifferentfromotherwesternlanguages,weanalyzethesyntacticandsemanticsstructureoftheChineselanguage.WeanalyzetopicdistributionbasedonChinesewordsandcharactersasthebasicunitandestablishthemappingrelationshipbetweencharactersandwords,inordertoestablishamoreeffectivesemanticmodel.Theworkisprocessedasthreeperiods:buildingtherelationshipbetweenwordsandcharacters;placingassymetricpriorbeforethedocument-topicdistributionandtopic-worddistribution;improvingthetopicmodelbasedonn-gramandclassinformation.MainlyusingLDAandGibbsSamplingandn-gramalgorithm.Wehaveverifiedthatthecharacter-basedLDAcanbemoreeffectivethantheword-basedLDA,andestablishedanimprovedtopicmodelbasedontheChinesecharacter-wordrelationshipandn-gram.Theeffectivenessofmodelhavebeentestified.ThemainlanguageisPythonandMatlab.YonghuiCong,ZengchangQin,JingYuandTaoWan.Cross-ModalInformationRetrieval-ACaseStudyonChineseWikipedia.InternationalConferenceonAdvan

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論