




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省大連市甘井子區(qū)2024屆數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.在平面直角坐標(biāo)系中,把拋物線y=2x2繞原點旋轉(zhuǎn)180°,再向右平移1個單位,向下平移2個單位,所得的拋物線的函數(shù)表達式為()A.y=2(x﹣1)2﹣2 B.y=2(x+1)2﹣2C.y=﹣2(x﹣1)2﹣2 D.y=﹣2(x+1)2﹣22.將拋物線y=2x2向左平移1個單位,再向上平移3個單位得到的拋物線,其解析式是()A.y=2(x+1)2+3 B.y=2(x-1)2-3C.y=2(x+1)2-3 D.y=2(x-1)2+33.近視眼鏡的度數(shù)y(度)與鏡片焦距x(m)成反比例,已知200度近視眼鏡鏡片的焦距為0.5m,則y與x的函數(shù)關(guān)系式為()A.y=100x B.y=C.y=200x D.y=4.如圖,點是中邊的中點,于,以為直徑的經(jīng)過,連接,有下列結(jié)論:①;②;③;④是的切線.其中正確的結(jié)論是()A.①② B.①②③ C.②③ D.①②③④5.拋物線y=(x﹣2)2+3的頂點坐標(biāo)是()A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)6.下列圖形中是中心對稱圖形的共有()A.1個 B.2個 C.3個 D.4個7.如圖,在△ABC中,∠BOC=140°,I是內(nèi)心,O是外心,則∠BIC等于()A.130° B.125° C.120° D.115°8.下列函數(shù)中,是二次函數(shù)的是()A.y=2x+1 B.y=(x﹣1)2﹣x2C.y=1﹣x2 D.y=19.△ABC中,∠C=90°,內(nèi)切圓與AB相切于點D,AD=2,BD=3,則△ABC的面積為()A.3 B.6 C.12 D.無法確定10.向陽村年的人均收入為萬元,年的人均收入為萬元.設(shè)年平均增長率為,根據(jù)題意,可列出方程為()A. B. C. D.二、填空題(每小題3分,共24分)11.某?!把袑W(xué)”活動小組在一次野外實踐時,發(fā)現(xiàn)一種植物的主干長出若干數(shù)目的支干,每個支干又長出同樣數(shù)目的小分支,主干、支干和小分支的總數(shù)是43,則這種植物每個支干長出______個小分支.12.如圖是測量河寬的示意圖,AE與BC相交于點D,∠B=∠C=90°,測得BD=120m,DC=60m,EC=50m,求得河寬AB=______m.13.已知⊙半徑為,點在⊙上,,則線段的最大值為_____.14.已知一個圓錐底面圓的半徑為6cm,高為8cm,則圓錐的側(cè)面積為_____cm1.(結(jié)果保留π)15.二次函數(shù)y=2x2﹣5kx﹣3的圖象經(jīng)過點M(﹣2,10),則k=_____.16.某園進行改造,現(xiàn)需要修建一些如圖所示圓形(不完整)的門,根據(jù)實際需要該門的最高點C距離地面的高度為2.5m,寬度AB為1m,則該圓形門的半徑應(yīng)為_____m.17.如圖,一下水管橫截面為圓形,直徑為,下雨前水面寬為,一場大雨過后,水面上升了,則水面寬為__________.18.關(guān)于x的一元二次方程有一根為0,則m的值為______三、解答題(共66分)19.(10分)在中,,點在邊上運動,連接,以為一邊且在的右側(cè)作正方形.(1)如果,如圖①,試判斷線段與之間的位置關(guān)系,并證明你的結(jié)論;(2)如果,如圖②,(1)中結(jié)論是否成立,說明理由.(3)如果,如圖③,且正方形的邊與線段交于點,設(shè),,,請直接寫出線段的長.(用含的式子表示)20.(6分)如圖,AB=AC,CD⊥AB于點D,點O是∠BAC的平分線上一點⊙O與AB相切于點M,與CD相切于點N(1)求證:∠AOC=135°(2)若NC=3,BC=,求DM的長21.(6分)在平面直角坐標(biāo)系中,直線與反比例函數(shù)的圖象的兩個交點分別為點(,)和點.(1)求的值和點的坐標(biāo);(2)如果點為軸上的一點,且∠直接寫出點A的坐標(biāo).22.(8分)如圖,在△ABC中,∠C=90°,以AC為直徑的⊙O交AB于點D,連接OD,點E在BC上,BE=DE.(1)求證:DE是⊙O的切線;(2)若BC=6,求線段DE的長;(3)若∠B=30°,AB=8,求陰影部分的面積(結(jié)果保留).23.(8分)如圖一座拱橋的示意圖,已知橋洞的拱形是拋物線.當(dāng)水面寬為12m時,橋洞頂部離水面4m.、(1)建立平面直角坐標(biāo)系,并求該拋物線的函數(shù)表達式;(2)若水面上升1m,水面寬度將減少多少?24.(8分)如圖,是的外接圓,為直徑,的平分線交于點,過點的切線分別交,的延長線于點,,連接.(1)求證:;(2)若,,求的半徑.25.(10分)有一張長,寬的長方形硬紙片(如圖1),截去四個全等的小正方形之后,折成無蓋的紙盒(如圖2).若紙盒的底面積為,求紙盒的高.26.(10分)如圖,正方形FGHI各頂點分別在△ABC各邊上,AD是△ABC的高,BC=10,AD=6.(1)證明:△AFI∽△ABC;(2)求正方形FGHI的邊長.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】拋物線y=1x1繞原點旋轉(zhuǎn)180°,即拋物線上的點(x,y)變?yōu)椋?x,-y),代入可得拋物線方程,然后根據(jù)左加右減的規(guī)律即可得出結(jié)論.【題目詳解】解:∵把拋物線y=1x1繞原點旋轉(zhuǎn)180°,∴新拋物線解析式為:y=﹣1x1,∵再向右平移1個單位,向下平移1個單位,∴平移后拋物線的解析式為y=﹣1(x﹣1)1﹣1.故選:C.【題目點撥】本題考查了拋物線的平移變換規(guī)律,旋轉(zhuǎn)變換規(guī)律,掌握拋物線的平移和旋轉(zhuǎn)變換規(guī)律是解題的關(guān)鍵.2、A【分析】拋物線平移不改變a的值.【題目詳解】原拋物線的頂點為(0,0),向左平移1個單位,再向上平移1個單位,那么新拋物線的頂點為(-1,1).可設(shè)新拋物線的解析式為y=2(x-h)2+k,代入得:y=2(x+1)2+1.
故選:A.3、A【解題分析】由于近視鏡度數(shù)y(度)與鏡片焦距x(米)之間成反比例關(guān)系可設(shè)y=kx,由200度近視鏡的鏡片焦距是0.5米先求得k【題目詳解】由題意,設(shè)y=kx由于點(0.5,200)適合這個函數(shù)解析式,則k=0.5×200=100,∴y=100x故眼鏡度數(shù)y與鏡片焦距x之間的函數(shù)關(guān)系式為y=100x故選:A.【題目點撥】本題考查根據(jù)實際問題列反比例函數(shù)關(guān)系式,解答該類問題的關(guān)鍵是確定兩個變量之間的函數(shù)關(guān)系,然后利用待定系數(shù)法求出它們的關(guān)系式.4、D【分析】由直徑所對的圓周角是直角,即可判斷出選項①正確;由O為AB的中點,得出AO為AB的一半,故AO為AC的一半,選項③正確;由OD為三角形ABC的中位線,根據(jù)中位線定理得到OD與AC平行,由AC與DE垂直得出OD與DE垂直,,選項④正確;由切線性質(zhì)可判斷②正確.【題目詳解】解:∵AB是圓的直徑,∴,∴,選項①正確;連接OD,如圖,∵D為BC的中點,O為AB的中點,∴DO為的中位線,∴,又∵,∴,∴,∴DE為圓O的切線,選項④正確;又OB=OD,∴,∵AB為圓的直徑,∴∵∴∴,選項②正確;∴AD垂直平方BC,∵AC=AB,2OA=AB∴,選項③正確故答案為:D.【題目點撥】本題考查的知識點主要是圓的切線的判定及其性質(zhì),圓周角定理及其推論,充分理解各知識點并能熟練運用是解題的關(guān)鍵.5、A【分析】根據(jù)拋物線的頂點式可直接得到頂點坐標(biāo).【題目詳解】解:y=(x﹣2)2+3是拋物線的頂點式方程,根據(jù)頂點式的坐標(biāo)特點可知,頂點坐標(biāo)為(2,3).故選:A.【題目點撥】本題考查了二次函數(shù)的頂點式與頂點坐標(biāo),頂點式y(tǒng)=(x-h)2+k,頂點坐標(biāo)為(h,k),對稱軸為直線x=h,難度不大.6、B【分析】根據(jù)中心對稱圖形的概念:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,進行判斷.【題目詳解】從左起第2、4個圖形是中心對稱圖形,故選B.【題目點撥】本題考查了中心對稱圖形的概念,注意掌握圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合.7、B【分析】根據(jù)圓周角定理求出∠BOC=2∠A,求出∠A度數(shù),根據(jù)三角形內(nèi)角和定理求出∠ABC+∠ACB,根據(jù)三角形的內(nèi)心得出∠IBC=∠ABC,∠ICB=∠ACB,求出∠IBC+∠ICB的度數(shù),再求出答案即可.【題目詳解】∵在△ABC中,∠BOC=140°,O是外心,∴∠BOC=2∠A,∴∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵I為△ABC的內(nèi)心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB==55°,∴∠BIC=180°﹣(∠IBC+∠ICB)=125°,故選:B.【題目點撥】此題主要考查三角形內(nèi)心和外心以及圓周角定理的性質(zhì),熟練掌握,即可解題.8、C【解題分析】根據(jù)二次函數(shù)的定義進行判斷.【題目詳解】解:A、該函數(shù)是由反比例函數(shù)平移得到的,不是二次函數(shù),故本選項錯誤;
B、由已知函數(shù)解析式得到:y=-2x+1,屬于一次函數(shù),故本選項錯誤;
C、該函數(shù)符合二次函數(shù)的定義,故本選項正確;
D、該函數(shù)不是二次函數(shù),故本選項錯誤;
故選:C.【題目點撥】本題考查二次函數(shù)的定義.熟知一般地,形如y=ax2+bx+c(a、b、c是常數(shù),a≠0)的函數(shù),叫做二次函數(shù)是解答此題的關(guān)鍵.9、B【分析】易證得四邊形OECF是正方形,然后由切線長定理可得AC=2+r,BC=3+r,AB=5,根據(jù)勾股定理列方程即可求得答案.【題目詳解】如圖,設(shè)⊙O分別與邊BC、CA相切于點E、F,連接OE,OF,
∵⊙O分別與邊AB、BC、CA相切于點D、E、F,
∴DE⊥BC,DF⊥AC,AF=AD=2,BE=BD=3,
∴∠OEC=∠OFC=90°,
∵∠C=90°,
∴四邊形OECF是矩形,
∵OE=OF,
∴四邊形OECF是正方形,
設(shè)EC=FC=r,
∴AC=AF+FC=2+r,BC=BE+EC=3+r,AB=AD+BD=2+3=5,
在Rt△ABC中,=+,
∴=+,
∴,
即
解得:或(舍去).
∴⊙O的半徑r為1,∴.故選:B【題目點撥】本題考查了三角形的內(nèi)切圓的性質(zhì)、正方形的判定與性質(zhì)、切線長定理以及勾股定理.注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.10、A【分析】設(shè)年平均增長率為,根據(jù):2017年的人均收入×1+增長率=年的人均收入,列出方程即可.【題目詳解】設(shè)設(shè)年平均增長率為,根據(jù)題意,得:,故選:A.【題目點撥】本題主要考查一元二次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程.二、填空題(每小題3分,共24分)11、6【分析】設(shè)這種植物每個支干長出個小分支,根據(jù)主干、支干和小分支的總數(shù)是43,即可得出關(guān)于的一元二次方程,解之取其正值即可得出結(jié)論.【題目詳解】解:設(shè)這種植物每個支干長出個小分支,依題意,得:,解得:(不合題意,舍去),.故選:.【題目點撥】本題考查了一元二次方程的應(yīng)用,找準等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.12、1【分析】由兩角對應(yīng)相等可得△BAD∽△CED,利用對應(yīng)邊成比例即可得兩岸間的大致距離AB的長.【題目詳解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,即,解得:AB==1(米).故答案為1.【題目點撥】本題主要考查了相似三角形的應(yīng)用,用到的知識點為:兩角對應(yīng)相等的兩三角形相似;相似三角形的對應(yīng)邊成比例.13、【分析】過點A作AE⊥AO,并使∠AEO=∠ABC,先證明,由三角函數(shù)可得出,進而求得,再通過證明,可得出,根據(jù)三角形三邊關(guān)系可得:,由勾股定理可得,求出BE的最大值,則答案即可求出.【題目詳解】解:過點A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根據(jù)三角形三邊關(guān)系可得:,∵,∴,∴BE的最大值為:,∴OC的最大值為:.【題目點撥】本題主要考查了三角形相似的判定和性質(zhì)、三角函數(shù)、勾股定理及三角形三邊關(guān)系,解題的關(guān)鍵是構(gòu)造直角三角形.14、60π【解題分析】試題分析:先根據(jù)勾股定理求得圓錐的母線長,再根據(jù)圓錐的側(cè)面積公式求解即可.由題意得圓錐的母線長∴圓錐的側(cè)面積.考點:勾股定理,圓錐的側(cè)面積點評:解題的關(guān)鍵是熟練掌握圓錐的側(cè)面積公式:圓錐的側(cè)面積底面半徑×母線.15、.【分析】點M(﹣2,10),代入二次函數(shù)y=2x2﹣5kx﹣3即可求出k的值.【題目詳解】把點M(﹣2,10),代入二次函數(shù)y=2x2﹣5kx﹣3得,8+10k﹣3=10,解得,k=,故答案為:.【題目點撥】本題考查求二次函數(shù)解析式的系數(shù),解題的關(guān)鍵是將圖象上的點坐標(biāo)代入函數(shù)解析式.16、【分析】過圓心作弦AB的垂線,運用垂徑定理和勾股定理即可得到結(jié)論.【題目詳解】過圓心點O作OE⊥AB于點E,連接OC,∵點C是該門的最高點,∴,∴CO⊥AB,∴C,O,E三點共線,連接OA,∵OE⊥AB,∴AE==0.5m,設(shè)圓O的半徑為R,則OE=2.5-R,∵OA2=AE2+OE2,∴R2=(0.5)2+(2.5-R)2,解得:R=,故答案為.【題目點撥】本題考查了垂徑定理,勾股定理,正確的作出輔助線是解題的關(guān)鍵.17、1【分析】先根據(jù)勾股定理求出OE的長,再根據(jù)垂徑定理求出CF的長,即可得出結(jié)論.【題目詳解】解:如圖:作OE⊥AB于E,交CD于F,連接OA,OC∵AB=60cm,OE⊥AB,且直徑為100cm,∴OA=50cm,AE=∴OE=,∵水管水面上升了10cm,∴OF=40-10=030cm,∴CF=,∴CD=2CF=1cm.故答案為:1.【題目點撥】本題考查的是垂徑定理的應(yīng)用,熟知平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.18、m=-1【解題分析】把x=0代入方程(m-1)x2+x+m2-9=0得m2-9=0,解得m1=1,m2=-1,然后根據(jù)一元二次方程的定義確定m的值.【題目詳解】把x=0代入方程(m-1)x2+x+m2-9=0得m2-9=0,解得m1=1,m2=-1,
而m-1≠0,
所以m的值為-1.
故答案是:-1.【題目點撥】考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.也考查了一元二次方程的定義.三、解答題(共66分)19、(1);證明見解析;(2)成立;理由見解析;(3).【分析】(1)先證明,得到,再根據(jù)角度轉(zhuǎn)換得到∠BCF=90°即可;(2)過點作交于點,可得,再證明,得,即可證明;(3)過點作交的延長線于點,可求出,則,根據(jù)得出相似比,即可表示出CP.【題目詳解】(1);證明:∵,,∴,由正方形得,∵,∴,在與中,,∴,∴,∴,即;(2)時,的結(jié)論成立;證明:如圖2,過點作交于點,∵,∴,∴,在和中,,∴,∴,,即;(3)過點作交的延長線于點,∵,∴△AQC為等腰直角三角形,∵,∴,∵DC=x,∴,∵四邊形ADEF為正方形,∴∠ADE=90°,∴∠PDC+∠ADQ=90°,∵∠ADQ+∠QAD=90°,∴∠PDC=∠QAD,∴,∴,∴,.【題目點撥】本題考查了全等三角形性質(zhì)及判定,相似三角形的判定及性質(zhì),正方形的性質(zhì)等,構(gòu)建全等三角形,相似三角形是解決此題的關(guān)鍵.20、(1)見解析;(2)DM=1.【分析】(1)只要證明OC平分∠ACD,即可解決問題;(2)由切線長定理可知:AM=AE,DM=DN,CN=CE=3,設(shè)DM=DN=x,在Rt△BDC中,根據(jù),構(gòu)建方程即可解決問題.【題目詳解】(1)證明:連接OM,ON,過O點做OE⊥AC,交AC于E,如圖所示,∵⊙O與AB相切于點M,與CD相切于點N∴OM⊥AB,ON⊥CD,∵OA平分∠BAC,OE⊥AC,OM⊥AB∴OM=OE即:E為⊙O的切點;∴OE=ON,又∵OE⊥AC,ON⊥CD∴OC平分∠ACD∵CD⊥AB∴∠ADC=90°∴∠DAC+∠ACD=90°∴∠OAC+∠OCA=45°∴∠AOC=180°-(∠OAC+∠OCA)=180°-45°=135°,即:∠AOC=135°(2)由(1)得,AM=AE,DM=DN,CN=CE=3,設(shè)DM=DN=x,∵AB=AC∴BD=AB-AD=AC-AE-DM=CE=DM=3-x∵CD=3+x在Rt?BCD中,由勾股定理得:即:解得:x=1或x=-1(舍去)即DM=1.【題目點撥】本題考查切線的性質(zhì),解題的關(guān)鍵是熟練掌握基本知識,學(xué)會利用參數(shù)構(gòu)建方程.21、(1)k=1,Q(-1,-1).(2)【分析】(1)將點P代入直線中即可求出m的值,再將P點代入反比例函數(shù)中即可得出k的值,通過直線與反比例函數(shù)聯(lián)立即可求出Q的坐標(biāo);(2)先求出PQ之間的距離,再利用直角三角形斜邊的中線等于斜邊的一半即可求出點A的坐標(biāo).【題目詳解】解:(1)∵點(,)在直線上,∴.∵點(,)在上,∴.∴∵點為直線與的交點,∴解得∴點坐標(biāo)為(,).(2)由勾股定理得∵∠∴∴(,0),(,0).【題目點撥】本題主要考查反比例函數(shù)與一次函數(shù)的綜合,掌握待定系數(shù)法,勾股定理是解題的關(guān)鍵.22、(1)詳見解析;(2)3;(3)【分析】(1)根據(jù)OA=OD,BE=DE,得∠A=∠1,∠B=∠2,根據(jù)∠ACB=90°,即可得∠1+∠2=90°,即可得OD⊥DE,從而可證明結(jié)論;(2)連接CD,根據(jù)現(xiàn)有條件推出CE是⊙O的切線,再結(jié)合DE是⊙O的切線,推出DE=CE又BE=DE,即可得出DE;(3)過O作OG⊥AD,垂足為G,根據(jù)已知條件推出AD,AG和OG的值,再根據(jù),即可得出答案.【題目詳解】解:(1)證明:∵OA=OD,BE=DE,∴∠A=∠1,∠B=∠2,∵△ABC中,∠ACB=90°,∴∠A+∠B=90°,∴∠1+∠2=90°,∴∠ODE=180°-(∠1+∠2)=90°,∴OD⊥DE,又OD為⊙O的半徑,∴DE是⊙O的切線;(2)連接CD,則∠ADC=90°,∵∠ACB=90°,∴AC⊥BC,又AC為⊙O的直徑,∴CE是⊙O的切線,又DE是⊙O的切線,∴DE=CE又BE=DE,∴DE=CE=BE=;(3)過O作OG⊥AD,垂足為G,則,∵Rt△ABC中,∠B=30°,AB=8,∴AC=,∠A=60°(又OA=OD),∴∠COD=120°,△AOD為等邊三角形,∴AD=AO=OD=2,∴,∴OG,∴,∴陰影部分的面積為.【題目點撥】本題考查了圓的切線的性質(zhì)和判定,三角函數(shù)和等邊三角形的性質(zhì),掌握知識點是解題關(guān)鍵.23、(1)圖見解析,拋物線的函數(shù)表達式為(注:因建立的平面直角坐標(biāo)系的不同而不同);(2)【分析】(1)以AB的中點為平面直角坐標(biāo)系的原點O,AB所在線為x軸,過點O作AB的垂線為y軸建立平面直角坐標(biāo)系(圖見解析);因此,拋物線的頂點坐標(biāo)為,可設(shè)拋物線的函數(shù)表達式為,再將B點的坐標(biāo)代入即可求解;(2)根據(jù)題(1)的結(jié)果,令求出x的兩個值,從而可得水面上升1m后的水面寬度,再與12m作差即可得出答案.【題目詳解】(1)以AB的中點為平面直角坐標(biāo)系的原點O,AB所在線為x軸,過點O作AB的垂線為y軸,建立的平面直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 玻璃行業(yè)的綠色工廠設(shè)計與建設(shè)考核試卷
- 森林資源可持續(xù)經(jīng)營與機械制造考核試卷
- 消費金融公司的服務(wù)流程標(biāo)準化考核試卷
- 玻璃纖維在汽車輕量化結(jié)構(gòu)部件的應(yīng)用考核試卷
- 保健食品批發(fā)市場的風(fēng)險管理考核試卷
- 生物科學(xué)與人類生活考核試卷
- 滑雪教練裝備租賃規(guī)范考核試卷
- 新媒體營銷電子教案 第4章 鏈接:流量池+產(chǎn)品電子教案
- 《君主集權(quán)的強化》統(tǒng)一多民族國家的鞏固和社會的危機課件-2
- 2025年一建《港口與航道工程管理與實務(wù)》通關(guān)必做強化訓(xùn)練試題庫300題及詳解
- 翻譯中的形合與意合課件
- 99S203 消防水泵接合器安裝圖集
- 恐懼-回避理論模型
- 營養(yǎng)醫(yī)師及營養(yǎng)科工作解讀課件
- DB13T 5461-2021 連翹種子種苗質(zhì)量標(biāo)準
- Q∕SY 04797-2020 燃油加油機應(yīng)用規(guī)范
- 日本古建筑-奈良篇
- 市場主體住所(經(jīng)營場所)申報承諾書
- 水龍頭生產(chǎn)工藝及其設(shè)備
- 公路橋梁和隧道工程施工安全風(fēng)險評估指南_圖文
- 傳感器與檢測技術(shù)(陳杰)課后習(xí)題答案(共48頁)
評論
0/150
提交評論