版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆浙江省湖州市實驗學(xué)校數(shù)學(xué)九年級第一學(xué)期期末綜合測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.下列圖形:(1)等邊三角形,(2)矩形,(3)平行四邊形,(4)菱形,是中心對稱圖形的有()個A.4 B.3 C.2 D.12.如圖,在中,.以為直徑作半圓,交于點,交于點,若,則的度數(shù)是()A. B. C. D.3.如圖,線段AB兩個端點的坐標(biāo)分別為A(6,6),B(8,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,則線段CD的長為()A.2 B. C.3 D.4.已知函數(shù)y=ax2+bx+c的圖象如圖所示,則關(guān)于x的方程ax2+bx+c﹣4=0的根的情況是()A.有兩個相等的實數(shù)根 B.有兩個異號的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根5.如圖,在△ABC中,E,G分別是AB,AC上的點,∠AEG=∠C,∠BAC的平分線AD交EG于點F,若,則()A. B. C. D.6.如圖,已知直線y=x與雙曲線y=(k>0)交于A、B兩點,A點的橫坐標(biāo)為3,則下列結(jié)論:①k=6;②A點與B點關(guān)于原點O中心對稱;③關(guān)于x的不等式<0的解集為x<﹣3或0<x<3;④若雙曲線y=(k>0)上有一點C的縱坐標(biāo)為6,則△AOC的面積為8,其中正確結(jié)論的個數(shù)()A.4個 B.3個 C.2個 D.1個7.“線段,等邊三角形,圓,矩形,正六邊形”這五個圖形中,既是軸對稱圖形又是中心對稱圖形的個數(shù)有()A.5個B.4個C.3個D.2個8.三角形的兩邊分別2和6,第三邊是方程x2-10x+21=0的解,則三角形周長為()A.11 B.15 C.11或15 D.不能確定9.一元二次方程的正根的個數(shù)是()A. B. C. D.不確定10.如圖,菱形在第一象限內(nèi),,反比例函數(shù)的圖象經(jīng)過點,交邊于點,若的面積為,則的值為()A. B. C. D.411.關(guān)于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一個根為0,則m為()A.0 B.1 C.﹣1 D.1或﹣112.一元二次方程x2﹣3x﹣4=0的一次項系數(shù)是()A.1 B.﹣3 C.3 D.﹣4二、填空題(每題4分,共24分)13.已知反比例函數(shù),在其位于第三像限內(nèi)的圖像上有一點M,從M點向y軸引垂線與y軸交于點N,連接M與坐標(biāo)原點O,則ΔMNO面積是_____.14.如圖,在平面直角坐標(biāo)系xOy中,,,如果拋物線與線段AB有公共點,那么a的取值范圍是______.15.如圖,四邊形ABCD中,AB∥CD,∠C=90°,AB=1,CD=2,BC=3,點P為BC邊上一動點,若AP⊥DP,則BP的長為_____.16.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠BAD=60°,則∠ACD=_____°.17.如圖,在中,,,點為邊上一點,作于點,若,,則的值為____.18.已知以線段AC為對角線的四邊形ABCD(它的四個頂點A,B,C,D按順時針方向排列)中,AB=BC=CD,∠ABC=100°,∠CAD=40°,則∠BCD的度數(shù)為____________.三、解答題(共78分)19.(8分)計算:2cos45°tan30°cos30°+sin260°.20.(8分)如圖,正方形ABCD的邊長為2,點E是AD邊上的動點,從點A開始沿AD向D運動.以BE為邊,在BE的上方作正方形BEFG,EF交DC于點H,連接CG、BH.請?zhí)骄浚海?)線段AE與CG是否相等?請說明理由.(2)若設(shè)AE=x,DH=y,當(dāng)x取何值時,y最大?最大值是多少?(3)當(dāng)點E運動到AD的何位置時,△BEH∽△BAE?21.(8分)解下列方程:(1);(2)22.(10分)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線,且拋物線經(jīng)過B(1,0),C(0,3)兩點,與x軸交于點A.(1)求拋物線的解析式;(2)如圖1,在拋物線的對稱軸直線上找一點M,使點M到點B的距離與到點C的距離之和最小,求出點M的坐標(biāo);(3)如圖2,點Q為直線AC上方拋物線上一點,若∠CBQ=45°,請求出點Q坐標(biāo).23.(10分)在△ABC中,P為邊AB上一點.(1)如圖1,若∠ACP=∠B,求證:AC2=AP·AB;(2)若M為CP的中點,AC=2,①如圖2,若∠PBM=∠ACP,AB=3,求BP的長;②如圖3,若∠ABC=45°,∠A=∠BMP=60°,直接寫出BP的長.24.(10分)如圖,在平面直角坐標(biāo)系xOy中,曲線經(jīng)過點A.(1)求曲線的表達式;(2)直線y=ax+3(a≠0)與曲線圍成的封閉區(qū)域為圖象G.①當(dāng)時,直接寫出圖象G上的整數(shù)點個數(shù)是;(注:橫,縱坐標(biāo)均為整數(shù)的點稱為整點,圖象G包含邊界.)②當(dāng)圖象G內(nèi)只有3個整數(shù)點時,直接寫出a的取值范圍.25.(12分)如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,BE⊥AB,垂足為B,BE=CD連接CE,DE.(1)求證:四邊形CDBE是矩形(2)若AC=2,∠ABC=30°,求DE的長26.如圖,在△ABC中,AD是BC邊上的高,tanB=cos∠DAC.(1)求證:AC=BD;(2)若sinC=,BC=12,求△ABC的面積.
參考答案一、選擇題(每題4分,共48分)1、B【解題分析】根據(jù)中心對稱圖形的概念判斷即可.【題目詳解】矩形,平行四邊形,菱形是中心對稱圖形,等邊三角形不是中心對稱圖形.故選B.【題目點撥】本題考查了中心對稱圖形的概念,判斷中心對稱圖形的關(guān)鍵是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.2、A【分析】連接BE、AD,根據(jù)直徑得出∠BEA=∠ADB=90°,求出∠ABE、∠DAB、∠DAC的度數(shù),根據(jù)圓周角定理求出即可.【題目詳解】解:連接BE、AD,
∵AB是圓的直徑,
∴∠ADB=∠AEB=90°,
∴AD⊥BC,
∵AB=AC,∠C=70°,
∴∠ABD=∠C=70°.∠BAC=2∠BAD∴.∠BAC=2∠BAD=2(90°-70°)=40°,∵∠BAC+=90°
∴=50°.故選A.【題目點撥】本題考查了圓周角定理,等腰三角形的性質(zhì)等知識,準(zhǔn)確作出輔助線是解題的關(guān)鍵.3、D【分析】直接利用A,B點坐標(biāo)得出AB的長,再利用位似圖形的性質(zhì)得出CD的長.【題目詳解】解:∵A(6,6),B(8,2),∴AB==2,∵以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴線段CD的長為:×2=.故選:D.【題目點撥】本題考查了位似圖形,解題的關(guān)鍵是熟悉位似圖形的性質(zhì).4、A【分析】根據(jù)拋物線的頂點坐標(biāo)的縱坐標(biāo)為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數(shù)y=ax2+bx+c的圖象與直線y=4交點的情況.【題目詳解】∵函數(shù)的頂點的縱坐標(biāo)為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數(shù)根,故選A.【題目點撥】本題考查了二次函數(shù)與一元二次方程,熟練掌握一元二次方程與二次函數(shù)間的關(guān)系是解題的關(guān)鍵.5、C【分析】根據(jù)兩組對應(yīng)角相等可判斷△AEG∽△ACB,△AEF∽△ACD,再得出線段間的比例關(guān)系進行計算即可得出結(jié)果.【題目詳解】解:(1)∵∠AEG=∠C,∠EAG=∠BAC,
∴△AEG∽△ACB.
∴.
∵∠EAF=∠CAD,∠AEF=∠C,
∴△AEF∽△ACD.
∴又,∴.∴故選C.【題目點撥】本題考查了相似三角形的判定,解答本題,要找到兩組對應(yīng)角相等,再利用相似的性質(zhì)求線段的比值.6、A【分析】①由A點橫坐標(biāo)為3,代入正比例函數(shù),可求得點A的坐標(biāo),繼而求得k值;
②根據(jù)直線和雙曲線的性質(zhì)即可判斷;
③結(jié)合圖象,即可求得關(guān)于x的不等式<0的解集;
④過點C作CD⊥x軸于點D,過點A作AE⊥軸于點E,可得S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC,由點C的縱坐標(biāo)為6,可求得點C的坐標(biāo),繼而求得答案.【題目詳解】①∵直線y=x與雙曲線y=(k>0)交于A、B兩點,A點的橫坐標(biāo)為3,∴點A的縱坐標(biāo)為:y=×3=2,∴點A(3,2),∴k=3×2=6,故①正確;②∵直線y=x與雙曲線y=(k>0)是中心對稱圖形,∴A點與B點關(guān)于原點O中心對稱,故②正確;③∵直線y=x與雙曲線y=(k>0)交于A、B兩點,∴B(﹣3,﹣2),∴關(guān)于x的不等式<0的解集為:x<﹣3或0<x<3,故③正確;④過點C作CD⊥x軸于點D,過點A作AE⊥x軸于點E,∵點C的縱坐標(biāo)為6,∴把y=6代入y=得:x=1,∴點C(1,6),∴S△AOC=S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+6)×(3﹣1)=8,故④正確;故選:A.【題目點撥】此題考查了反比例函數(shù)的性質(zhì)、待定系數(shù)法求函數(shù)的解析式以及一次函數(shù)的性質(zhì)等知識.此題難度較大,綜合性很強,注意掌握數(shù)形結(jié)合思想的應(yīng)用.7、B【解題分析】根據(jù)軸對稱圖形與中心對稱圖形的概念結(jié)合線段、等邊三角形、圓、矩形、正六邊形的性質(zhì)求解.【題目詳解】∵在線段、等邊三角形、圓、矩形、正六邊形這五個圖形中,既是中心對稱圖形又是軸對稱圖形的有線段、圓、矩形、正六邊形,共4個.故答案為:B.【題目點撥】本題考查的知識點是中心對稱圖形與軸對稱圖形的概念,解題關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后原圖形重合.8、B【題目詳解】解:方程x2-10x+21=0,變形得:(x-3)(x-7)=0,解得:x1=3,x2=7,若x=3,三角形三邊為2,3,6,不合題意,舍去,則三角形的周長為2+6+7=1.故選:B.9、B【分析】解法一:根據(jù)一元二次方程的解法直接求解判斷正根的個數(shù);解法二:先將一元二次方程化為一般式,再根據(jù)一元二次方程的根與系數(shù)的關(guān)系即可判斷正根的個數(shù).【題目詳解】解:解法一:化為一般式得,,∵a=1,b=3,c=?4,則,∴方程有兩個不相等的實數(shù)根,∴,即,,所以一元二次方程的正根的個數(shù)是1;解法二:化為一般式得,,,方程有兩個不相等的實數(shù)根,,則、必為一正一負,所以一元二次方程的正根的個數(shù)是1;故選B.【題目點撥】本題考查了一元二次方程的解法,熟練掌握解一元二次方程的步驟是解題的關(guān)鍵;如果只判斷正根或負根的個數(shù),也可靈活運用一元二次方程的根與系數(shù)的關(guān)系進行判斷.10、C【分析】過A作AE⊥x軸于E,設(shè)OE=,則AE=,OA=,即菱形邊長為,再根據(jù)△AOD的面積等于菱形面積的一半建立方程可求出,利用點A的橫縱坐標(biāo)之積等于k即可求解.【題目詳解】如圖,過A作AE⊥x軸于E,設(shè)OE=,在Rt△AOE中,∠AOE=60°∴AE=,OA=∴A,菱形邊長為由圖可知S菱形AOCB=2S△AOD∴,即∴∴故選C.【題目點撥】本題考查了反比例函數(shù)與幾何綜合問題,利用特殊角度的三角函數(shù)值表示出菱形邊長及A點坐標(biāo)是解決本題的關(guān)鍵.11、C【分析】將0代入一元二次方程中建立一個關(guān)于m的一元二次方程,解方程即可,再根據(jù)一元二次方程的定義即可得出答案.【題目詳解】解:依題意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1.故選:C.【題目點撥】本題主要考查一元二次方程的根及一元二次方程的定義,準(zhǔn)確的運算是解題的關(guān)鍵.12、B【解題分析】根據(jù)一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數(shù)且a≠0),在一般形式中bx叫一次項,系數(shù)是b,可直接得到答案.【題目詳解】解:一次項是:未知數(shù)次數(shù)是1的項,故一次項是﹣3x,系數(shù)是:﹣3,故選:B.【題目點撥】此題考查的是求一元一次方程一般式中一次項系數(shù),掌握一元一次方程的一般形式和一次項系數(shù)的定義是解決此題的關(guān)鍵.二、填空題(每題4分,共24分)13、3【分析】根據(jù)反比例函數(shù)系數(shù)k的幾何意義得到:△MNO的面積為|k|,即可得出答案.【題目詳解】∵反比例函數(shù)的解析式為,∴k=6,∵點M在反比例函數(shù)圖象上,MN⊥y軸于N,∴S△MNO=|k|=3,故答案為:3【題目點撥】本題考查反比例函數(shù)系數(shù)k的幾何意義,過雙曲線上的任意一點分別向兩條坐標(biāo)軸作垂線,與坐標(biāo)軸圍成的矩形面積就等于|k|.本知識點是中考的重要考點,同學(xué)們應(yīng)高度關(guān)注.14、【解題分析】分別把A、B點的坐標(biāo)代入得a的值,根據(jù)二次函數(shù)的性質(zhì)得到a的取值范圍.【題目詳解】解:把代入得;把代入得,所以a的取值范圍為.故答案為.【題目點撥】本題考查二次函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì).15、1或2【分析】設(shè)BP=x,則PC=3-x,根據(jù)平行線的性質(zhì)可得∠B=90°,根據(jù)同角的余角相等可得∠CDP=∠APB,即可證明△CDP∽△BPA,根據(jù)相似三角形的性質(zhì)列方程求出x的值即可得答案.【題目詳解】設(shè)BP=x,則PC=3-x,∵AB∥CD,∠C=90°,∴∠B=180°-∠C=90°,∴∠B=∠C,∵AP⊥DP,∴∠APB+∠DPC=90°,∵∠CDP+∠DPC=90°,∴∠CDP=∠APB,∴△CDP∽△BPA,∴,∵AB=1,CD=2,BC=3,∴,解得:x1=1,x2=2,∴BP的長為1或2,故答案為:1或2【題目點撥】此題考查的是相似三角形的判定及性質(zhì),掌握相似三角形的對應(yīng)邊成比例列方程是解題的關(guān)鍵.16、1【解題分析】連接BD.根據(jù)圓周角定理可得.【題目詳解】解:如圖,連接BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案為1.【題目點撥】考核知識點:圓周角定理.理解定義是關(guān)鍵.17、【分析】作輔助線證明四邊形DFCE是矩形,得DF=CE,根據(jù)角平分線證明∠ACD=∠CDE即可解題.【題目詳解】解:過點D作DF⊥AC于F,∵,∴DF=3,∵,∴四邊形DFCE是矩形,CE=DF=3,在Rt△DEC中,tan∠CDE==,∵∠ACD=∠CDE,∴=.【題目點撥】本題考查了三角函數(shù)的正切值求值,矩形的性質(zhì),中等難度,根據(jù)角平分線證明∠ACD=∠CDE是解題關(guān)鍵.18、80°或100°【解題分析】作出圖形,證明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,分類討論可得解.【題目詳解】∵AB=BC,∠ABC=100°,∴∠1=∠2=∠CAD=40°,∴AD∥BC.點D的位置有兩種情況:如圖①,過點C分別作CE⊥AB于E,CF⊥AD于F,∵∠1=∠CAD,∴CE=CF,在Rt△ACE與Rt△ACF中,,∴Rt△ACE≌Rt△ACF,∴∠ACE=∠ACF.在Rt△BCE與Rt△DCF中,,∴Rt△BCE≌Rt△DCF,∴∠BCE=∠DCF,∴∠ACD=∠2=40°,∴∠BCD=80°;如圖②,∵AD′∥BC,AB=CD′,∴四邊形ABCD′是等腰梯形,∴∠BCD′=∠ABC=100°,綜上所述,∠BCD=80°或100°,故答案為80°或100°.【題目點撥】本題考查了全等三角形的判定與性質(zhì),等腰梯形的判定與性質(zhì),本題關(guān)鍵是證明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,同時注意分類思想的應(yīng)用.三、解答題(共78分)19、【分析】將特殊角的三角函數(shù)值代入求解.【題目詳解】解:原式=﹣+=.【題目點撥】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是熟記特殊角的三角函數(shù)值.20、(1)AE=CG,見解析;(2)當(dāng)x=1時,y有最大值,為;(3)當(dāng)E點是AD的中點時,△BEH∽△BAE,見解析.【解題分析】(1)由正方形的性質(zhì)可得AB=BC,BE=BG,∠ABC=∠EBG=90°,由“SAS”可證△ABE≌△CBG,可得AE=CG;(2)由正方形的性質(zhì)可得∠A=∠D=∠FEB=90°,由余角的性質(zhì)可得∠ABE=∠DEH,可得△ABE∽△DEH,可得,由二次函數(shù)的性質(zhì)可求最大值;(3)當(dāng)E點是AD的中點時,可得AE=1,DH=,可得,且∠A=∠FEB=90°,即可證△BEH∽△BAE.【題目詳解】(1)AE=CG,理由如下:∵四邊形ABCD,四邊形BEFG是正方形,∴AB=BC,BE=BG,∠ABC=∠EBG=90°,∴∠ABE=∠CBG,且AB=BC,BE=BG,∴△ABE≌△CBG(SAS),∴AE=CG;(2)∵四邊形ABCD,四邊形BEFG是正方形,∴∠A=∠D=∠FEB=90°,∴∠AEB+∠ABE=90°,∠AEB+∠DEH=90°,∴∠ABE=∠DEH,又∵∠A=∠D,∴△ABE∽△DEH,∴,∴∴=,∴當(dāng)x=1時,y有最大值為;(3)當(dāng)E點是AD的中點時,△BEH∽△BAE,理由如下:∵E是AD中點,∴AE=1,∴又∵△ABE∽△DEH,∴,又∵,∴,且∠DAB=∠FEB=90°,∴△BEH∽△BAE.【題目點撥】本題是相似形綜合題,考查了相似三角形的判定和性質(zhì),正方形的性質(zhì),二次函數(shù)的性質(zhì),靈活運用這些性質(zhì)進行推理是本題的關(guān)鍵.21、(1)(2).【分析】(1)利用因式分解法解方程得出答案;(2)利用因式分解法解方程得出答案;【題目詳解】(1)解得:(2)解得:【題目點撥】本題考查解一元二次方程-因式分解法,熟練掌握計算法則是解題關(guān)鍵.22、(1);(2)當(dāng)點到點的距離與到點的距離之和最小時的坐標(biāo)為;(3)點.【分析】(1)根據(jù)對稱軸方程可得,把B、C坐標(biāo)代入列方程組求出a、b、c的值即可得答案;(2)根據(jù)二次函數(shù)的對稱性可得A點坐標(biāo),設(shè)直線AC與對稱軸的交點為M,可得MB=MA,即可得出MB+MC=MC+MA=AC,為MB+MC的最小值,根據(jù)A、C坐標(biāo),利用待定系數(shù)法可求出直線AC的解析式,把x=-1代入求出y值,即可得點M的坐標(biāo).(3)設(shè)直線BQ交y軸于點H,過點作于點,利用勾股定理可求出BC的長,根據(jù)∠CBQ=45°可得HM=BM,利用∠OCB的正切函數(shù)可得CM=3HM,即可求出CM、HM的長,利用勾股定理可求出CH的長,即可得H點坐標(biāo),利用待定系數(shù)法可得直線BH的解析式,聯(lián)立直線BQ與拋物線的解析式求出交點坐標(biāo)即可得點Q坐標(biāo).【題目詳解】(1)∵拋物線y=ax2+bx+c(a≠0)的對稱軸為直線,∴,∵拋物線經(jīng)過B(1,0),C(0,3)兩點,∴,解得:,∴拋物線解析式為.(2)設(shè)直線AC的解析式為y=mx+n,∵拋物線y=ax2+bx+c(a≠0)的對稱軸為直線,B(0,0),∴點A坐標(biāo)為(-3,0),∵C(0,3),∴,解得:,∴直線解析式為,設(shè)直線與對稱軸的交點為,∵點A與點B關(guān)于對稱軸x=-1對稱,∴MA=MB,∴MB+MC=MA+MC=AC,∴此時的值最小,當(dāng)時,y=-1+3=2,∴當(dāng)點到點的距離與到點的距離之和最小時的坐標(biāo)為.(3)如圖,設(shè)直線交軸于點,過點作于點,∵B(1,0),C(0,3),∴OB=1,OC=3,BC==,∴,∵∠CBQ=45°,∴△BHM是等腰直角三角形,∴HM=BM,∵tan∠OCB=,∴CM=3HM,∴BC=MB+CM=4HM=,解得:,∴CM=,∴CH==,∴OH=OC-CH=3-=,∴,設(shè)直線BH的解析式為:y=kx+b,∴,解得:,∴的表達式為:,聯(lián)立直線BH與拋物線解析式得,解得:(舍去)或x=,當(dāng)x=時,y==,∴點Q坐標(biāo)為(,).【題目點撥】本題綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法求函數(shù)(二次函數(shù)和一次函數(shù))的解析式、利用軸對稱性質(zhì)確定線段的最小長度,熟練掌握二次函數(shù)的性質(zhì)是解題關(guān)鍵.23、(1)證明見解析;(2)①BP=;②BP=.【解題分析】試題分析:(1)根據(jù)已知條件易證△ACP∽△ABC,由相似三角形的性質(zhì)即可證得結(jié)論;(2)①如圖,作CQ∥BM交AB延長線于Q,設(shè)BP=x,則PQ=2x,易證△APC∽△ACQ,所以AC2=AP·AQ,由此列方程,解方程即可求得BP的長;②如圖:作CQ⊥AB于點Q,作CP0=CP交AB于點P0,再證△AP0C∽△MPB,(2)的方法求得AP0的長,即可得BP的長.試題解析:(1)證明:∵∠ACP=∠B,∠BAC=∠CAP,∴△ACP∽△ABC,∴AC:AB=AP:AC,∴AC2=AP·AB;(2)①如圖,作CQ∥BM交AB延長線于Q,設(shè)BP=x,則PQ=2x∵∠PBM=∠ACP,∠PAC=∠CAQ,∴△APC∽△ACQ,由AC2=AP·AQ得:22=(3-x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年鋁箔復(fù)合聚苯乙烯保溫板項目可行性研究報告
- 2024年素色高溫烤漆項目可行性研究報告
- 班主任能力提升方案
- 班主任工作室管理制度
- 煤炭加工工程中的地下工程勘察考核試卷
- 石油開采與供應(yīng)鏈優(yōu)化考核試卷
- 電機制造企業(yè)風(fēng)險管理考核試卷
- 漁業(yè)扶貧與社會公益事業(yè)考核試卷
- 云端存儲在醫(yī)療保健中的應(yīng)用考核試卷
- 知識產(chǎn)權(quán)的商業(yè)化運用考核試卷
- (2024年)人體生理解剖學(xué)圖解
- 質(zhì)量改進計劃及實施方案
- 2024年山東青島城投金融控股集團有限公司招聘筆試參考題庫含答案解析
- 人生觀的主要內(nèi)容講解
- 醫(yī)院培訓(xùn)課件:《RCA-根本原因分析》
- 苯妥英鋅的合成1(修改)
- 信創(chuàng)醫(yī)療工作總結(jié)
- 高中物理《相互作用》大單元集體備課
- 南仁東和中國天眼課件
- 彩票市場銷售計劃書
- 設(shè)備維保的現(xiàn)場維修與故障處理
評論
0/150
提交評論